## Mathematical Models Of Financial Derivatives

Author: Yue-Kuen Kwok
Publisher: Springer Science & Business Media
ISBN: 9783540686880
Size: 26.63 MB
Format: PDF, Mobi
View: 2491

This second edition, now featuring new material, focuses on the valuation principles that are common to most derivative securities. A wide range of financial derivatives commonly traded in the equity and fixed income markets are analysed, emphasising aspects of pricing, hedging and practical usage. This second edition features additional emphasis on the discussion of Ito calculus and Girsanovs Theorem, and the risk-neutral measure and equivalent martingale pricing approach. A new chapter on credit risk models and pricing of credit derivatives has been added. Up-to-date research results are provided by many useful exercises.

## Derivative Securities And Difference Methods

Author: You-lan Zhu
Publisher: Springer Science & Business Media
ISBN: 1461473063
Size: 23.29 MB
Format: PDF, ePub
View: 1696

This book is mainly devoted to finite difference numerical methods for solving partial differential equations (PDEs) models of pricing a wide variety of financial derivative securities. With this objective, the book is divided into two main parts. In the first part, after an introduction concerning the basics on derivative securities, the authors explain how to establish the adequate PDE boundary value problems for different sets of derivative products (vanilla and exotic options, and interest rate derivatives). For many option problems, the analytic solutions are also derived with details. The second part is devoted to explaining and analyzing the application of finite differences techniques to the financial models stated in the first part of the book. For this, the authors recall some basics on finite difference methods, initial boundary value problems, and (having in view financial products with early exercise feature) linear complementarity and free boundary problems. In each chapter, the techniques related to these mathematical and numerical subjects are applied to a wide variety of financial products. This is a textbook for graduate students following a mathematical finance program as well as a valuable reference for those researchers working in numerical methods in financial derivatives. For this new edition, the book has been updated throughout with many new problems added. More details about numerical methods for some options, for example, Asian options with discrete sampling, are provided and the proof of solution-uniqueness of derivative security problems and the complete stability analysis of numerical methods for two-dimensional problems are added. Review of first edition: “...the book is highly well designed and structured as a textbook for graduate students following a mathematical finance program, which includes Black-Scholes dynamic hedging methodology to price financial derivatives. Also, it is a very valuable reference for those researchers working in numerical methods in financial derivatives, either with a more financial or mathematical background." -- MATHEMATICAL REVIEWS

## Financial Derivatives Modeling

Author: Christian Ekstrand
Publisher: Springer Science & Business Media
ISBN: 3642221556
Size: 75.60 MB
Format: PDF, Mobi
View: 892

This book gives a comprehensive introduction to the modeling of financial derivatives, covering all major asset classes (equities, commodities, interest rates and foreign exchange) and stretching from Black and Scholes' lognormal modeling to current-day research on skew and smile models. The intended reader has a solid mathematical background and is a graduate/final-year undergraduate student specializing in Mathematical Finance, or works at a financial institution such as an investment bank or a hedge fund.

## Mathematics Of Financial Markets

Author: Robert J Elliott
Publisher: Springer Science & Business Media
ISBN: 1475771460
Size: 60.52 MB
Format: PDF, ePub
View: 1516

This book explores the mathematics that underpins pricing models for derivative securities such as options, futures and swaps in modern markets. Models built upon the famous Black-Scholes theory require sophisticated mathematical tools drawn from modern stochastic calculus. However, many of the underlying ideas can be explained more simply within a discrete-time framework. This is developed extensively in this substantially revised second edition to motivate the technically more demanding continuous-time theory.

## Derivative Pricing In Discrete Time

Author: Nigel J. Cutland
Publisher: Springer Science & Business Media
ISBN: 1447144082
Size: 65.31 MB
Format: PDF, ePub, Docs
View: 6942

This book provides an introduction to the mathematical modelling of real world financial markets and the rational pricing of derivatives, which is part of the theory that not only underpins modern financial practice but is a thriving area of mathematical research. The central theme is the question of how to find a fair price for a derivative; defined to be a price at which it is not possible for any trader to make a risk free profit by trading in the derivative. To keep the mathematics as simple as possible, while explaining the basic principles, only discrete time models with a finite number of possible future scenarios are considered. The theory examines the simplest possible financial model having only one time step, where many of the fundamental ideas occur, and are easily understood. Proceeding slowly, the theory progresses to more realistic models with several stocks and multiple time steps, and includes a comprehensive treatment of incomplete models. The emphasis throughout is on clarity combined with full rigour. The later chapters deal with more advanced topics, including how the discrete time theory is related to the famous continuous time Black-Scholes theory, and a uniquely thorough treatment of American options. The book assumes no prior knowledge of financial markets, and the mathematical prerequisites are limited to elementary linear algebra and probability. This makes it accessible to undergraduates in mathematics as well as students of other disciplines with a mathematical component. It includes numerous worked examples and exercises, making it suitable for self-study.

## A Course In Derivative Securities

Author: Kerry Back
Publisher: Springer Science & Business Media
ISBN: 3540279008
Size: 79.90 MB
Format: PDF, Docs
View: 5227

"Deals with pricing and hedging financial derivatives.... Computational methods are introduced and the text contains the Excel VBA routines corresponding to the formulas and procedures described in the book. This is valuable since computer simulation can help readers understand the theory....The book...succeeds in presenting intuitively advanced derivative modelling... it provides a useful bridge between introductory books and the more advanced literature." --MATHEMATICAL REVIEWS

## Financial Modeling

Author: Stéphane Crépey
Publisher: Springer Science & Business Media
ISBN: 3642371132
Size: 59.73 MB
Format: PDF, ePub
View: 6975

Backward stochastic differential equations (BSDEs) provide a general mathematical framework for solving pricing and risk management questions of financial derivatives. They are of growing importance for nonlinear pricing problems such as CVA computations that have been developed since the crisis. Although BSDEs are well known to academics, they are less familiar to practitioners in the financial industry. In order to fill this gap, this book revisits financial modeling and computational finance from a BSDE perspective, presenting a unified view of the pricing and hedging theory across all asset classes. It also contains a review of quantitative finance tools, including Fourier techniques, Monte Carlo methods, finite differences and model calibration schemes. With a view to use in graduate courses in computational finance and financial modeling, corrected problem sets and Matlab sheets have been provided. Stéphane Crépey’s book starts with a few chapters on classical stochastic processes material, and then... fasten your seatbelt... the author starts traveling backwards in time through backward stochastic differential equations (BSDEs). This does not mean that one has to read the book backwards, like a manga! Rather, the possibility to move backwards in time, even if from a variety of final scenarios following a probability law, opens a multitude of possibilities for all those pricing problems whose solution is not a straightforward expectation. For example, this allows for framing problems like pricing with credit and funding costs in a rigorous mathematical setup. This is, as far as I know, the first book written for several levels of audiences, with applications to financial modeling and using BSDEs as one of the main tools, and as the song says: "it's never as good as the first time". Damiano Brigo, Chair of Mathematical Finance, Imperial College London While the classical theory of arbitrage free pricing has matured, and is now well understood and used by the finance industry, the theory of BSDEs continues to enjoy a rapid growth and remains a domain restricted to academic researchers and a handful of practitioners. Crépey’s book presents this novel approach to a wider community of researchers involved in mathematical modeling in finance. It is clearly an essential reference for anyone interested in the latest developments in financial mathematics. Marek Musiela, Deputy Director of the Oxford-Man Institute of Quantitative Finance

## Mathematics Of The Financial Markets

Author: Alain Ruttiens
Publisher: John Wiley & Sons
ISBN: 1118513487
Size: 77.93 MB
Format: PDF, ePub
View: 6662

The book aims to prioritise what needs mastering and presents the content in the most understandable, concise and pedagogical way illustrated by real market examples. Given the variety and the complexity of the materials the book covers, the author sorts through a vast array of topics in a subjective way, relying upon more than twenty years of experience as a market practitioner. The book only requires the reader to be knowledgeable in the basics of algebra and statistics. The Mathematical formulae are only fully proven when the proof brings some useful insight. These formulae are translated from algebra into plain English to aid understanding as the vast majority of practitioners involved in the financial markets are not required to compute or calculate prices or sensitivities themselves as they have access to data providers. Thus, the intention of this book is for the practitioner to gain a deeper understanding of these calculations, both for a safety reason – it is better to understand what is behind the data we manipulate – and secondly being able to appreciate the magnitude of the prices we are confronted with and being able to draft a rough calculation, aside of the market data. The author has avoided excessive formalism where possible. Formalism is securing the outputs of research, but may, in other circumstances, burden the understanding by non-mathematicians; an example of this case is in the chapter dedicated to the basis of stochastic calculus. The book is divided into two parts: First, the deterministic world, starting from the yield curve building and related calculations (spot rates, forward rates, discrete versus continuous compounding, etc.), and continuing with spot instruments valuation (short term rates, bonds, currencies and stocks) and forward instruments valuation (forward forex, FRAs and variants, swaps & futures); Second, the probabilistic world, starting with the basis of stochastic calculus and the alternative approach of ARMA to GARCH, and continuing with derivative pricing: options, second generation options, volatility, credit derivatives; This second part is completed by a chapter dedicated to market performance & risk measures, and a chapter widening the scope of quantitative models beyond the Gaussian hypothesis and evidencing the potential troubles linked to derivative pricing models.

## An Introduction To Mathematical Finance With Applications

Author: Arlie O. Petters
Publisher: Springer
ISBN: 1493937839
Size: 43.33 MB
Format: PDF, ePub, Docs
View: 1871

This textbook aims to fill the gap between those that offer a theoretical treatment without many applications and those that present and apply formulas without appropriately deriving them. The balance achieved will give readers a fundamental understanding of key financial ideas and tools that form the basis for building realistic models, including those that may become proprietary. Numerous carefully chosen examples and exercises reinforce the student’s conceptual understanding and facility with applications. The exercises are divided into conceptual, application-based, and theoretical problems, which probe the material deeper. The book is aimed toward advanced undergraduates and first-year graduate students who are new to finance or want a more rigorous treatment of the mathematical models used within. While no background in finance is assumed, prerequisite math courses include multivariable calculus, probability, and linear algebra. The authors introduce additional mathematical tools as needed. The entire textbook is appropriate for a single year-long course on introductory mathematical finance. The self-contained design of the text allows for instructor flexibility in topics courses and those focusing on financial derivatives. Moreover, the text is useful for mathematicians, physicists, and engineers who want to learn finance via an approach that builds their financial intuition and is explicit about model building, as well as business school students who want a treatment of finance that is deeper but not overly theoretical.

## Mathematical Finance

Author: Christian Fries
Publisher: John Wiley & Sons
ISBN: 9780470179772
Size: 74.97 MB
Format: PDF, ePub, Docs
View: 5634

A balanced introduction to the theoretical foundations and real-world applications of mathematical finance The ever-growing use of derivative products makes it essential for financial industry practitioners to have a solid understanding of derivative pricing. To cope with the growing complexity, narrowing margins, and shortening life-cycle of the individual derivative product, an efficient, yet modular, implementation of the pricing algorithms is necessary. Mathematical Finance is the first book to harmonize the theory, modeling, and implementation of today's most prevalent pricing models under one convenient cover. Building a bridge from academia to practice, this self-contained text applies theoretical concepts to real-world examples and introduces state-of-the-art, object-oriented programming techniques that equip the reader with the conceptual and illustrative tools needed to understand and develop successful derivative pricing models. Utilizing almost twenty years of academic and industry experience, the author discusses the mathematical concepts that are the foundation of commonly used derivative pricing models, and insightful Motivation and Interpretation sections for each concept are presented to further illustrate the relationship between theory and practice. In-depth coverage of the common characteristics found amongst successful pricing models are provided in addition to key techniques and tips for the construction of these models. The opportunity to interactively explore the book's principal ideas and methodologies is made possible via a related Web site that features interactive Java experiments and exercises. While a high standard of mathematical precision is retained, Mathematical Finance emphasizes practical motivations, interpretations, and results and is an excellent textbook for students in mathematical finance, computational finance, and derivative pricing courses at the upper undergraduate or beginning graduate level. It also serves as a valuable reference for professionals in the banking, insurance, and asset management industries.