Download methods for computational gene prediction in pdf or read methods for computational gene prediction in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get methods for computational gene prediction in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Computational Methods In Molecular Biology

Author: S.L. Salzberg
Publisher: Elsevier
ISBN: 9780080860930
Size: 47.69 MB
Format: PDF, ePub
View: 4202
Download and Read
Computational biology is a rapidly expanding field, and the number and variety of computational methods used for DNA and protein sequence analysis is growing every day. These algorithms are extremely valuable to biotechnology companies and to researchers and teachers in universities. This book explains the latest computer technology for analyzing DNA, RNA, and protein sequences. Clear and easy to follow, designed specifically for the non-computer scientist, it will help biologists make better choices on which algorithm to use. New techniques and demonstrations are elucidated, as are state-of-the-art problems, and more advanced material on the latest algorithms. The primary audience for this volume are molecular biologists working either in biotechnology companies or academic research environments, individual researchers and the institutions they work for, and students. Any biologist who relies on computers should want this book. A secondary audience will be computer scientists developing techniques with applications in biology. An excellent reference for leading techniques, it will also help introduce computer scientists to the biology problems. This is an outstanding work which will be ideal for the increasing number of scientists moving into computational biology.

Essential Bioinformatics

Author: Jin Xiong
Publisher: Cambridge University Press
ISBN: 113945062X
Size: 24.71 MB
Format: PDF, Mobi
View: 5113
Download and Read
Essential Bioinformatics is a concise yet comprehensive textbook of bioinformatics, which provides a broad introduction to the entire field. Written specifically for a life science audience, the basics of bioinformatics are explained, followed by discussions of the state-of-the-art computational tools available to solve biological research problems. All key areas of bioinformatics are covered including biological databases, sequence alignment, genes and promoter prediction, molecular phylogenetics, structural bioinformatics, genomics and proteomics. The book emphasizes how computational methods work and compares the strengths and weaknesses of different methods. This balanced yet easily accessible text will be invaluable to students who do not have sophisticated computational backgrounds. Technical details of computational algorithms are explained with a minimum use of mathematical formulae; graphical illustrations are used in their place to aid understanding. The effective synthesis of existing literature as well as in-depth and up-to-date coverage of all key topics in bioinformatics make this an ideal textbook for all bioinformatics courses taken by life science students and for researchers wishing to develop their knowledge of bioinformatics to facilitate their own research.

Modern Genome Annotation

Author: D. Frishman
Publisher: Springer Science & Business Media
ISBN: 3211751238
Size: 52.81 MB
Format: PDF, ePub, Mobi
View: 958
Download and Read
An accurate description of current scientific developments in the field of bioinformatics and computational implementation is presented by research of the BioSapiens Network of Excellence. Bioinformatics is essential for annotating the structure and function of genes, proteins and the analysis of complete genomes and to molecular biology and biochemistry. Included is an overview of bioinformatics, the full spectrum of genome annotation approaches including; genome analysis and gene prediction, gene regulation analysis and expression, genome variation and QTL analysis, large scale protein annotation of function and structure, annotation and prediction of protein interactions, and the organization and annotation of molecular networks and biochemical pathways. Also covered is a technical framework to organize and represent genome data using the DAS technology and work in the annotation of two large genomic sets: HIV/HCV viral genomes and splicing alternatives potentially encoded in 1% of the human genome.

Machine Learning For Protein Subcellular Localization Prediction

Author: Shibiao Wan
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 150150150X
Size: 42.10 MB
Format: PDF, ePub
View: 1114
Download and Read
For bioinformaticians, computational biologists, and wet-lab biologists, the authors provide the latest machine learning approaches for protein subcellular localization prediction with a systemic scheme for improving predictors performance.

Computational Methods For Understanding Bacterial And Archaeal Genomes

Author: Ying Xu
Publisher: Imperial College Press
ISBN: 1860949835
Size: 75.19 MB
Format: PDF, Kindle
View: 1175
Download and Read
Over 500 prokaryotic genomes have been sequenced to date, and thousands more have been planned for the next few years. While these genomic sequence data provide unprecedented opportunities for biologists to study the world of prokaryotes, they also raise extremely challenging issues such as how to decode the rich information encoded in these genomes. This comprehensive volume includes a collection of cohesively written chapters on prokaryotic genomes, their organization and evolution, the information they encode, and the computational approaches needed to derive such information. A comparative view of bacterial and archaeal genomes, and how information is encoded differently in them, is also presented. Combining theoretical discussions and computational techniques, the book serves as a valuable introductory textbook for graduate-level microbial genomics and informatics courses.

Sequence Evolution Function

Author: Eugene Koonin
Publisher: Springer Science & Business Media
ISBN: 1475737831
Size: 43.59 MB
Format: PDF, ePub
View: 5917
Download and Read
Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.

Pattern Recognition In Computational Molecular Biology

Author: Mourad Elloumi
Publisher: John Wiley & Sons
ISBN: 1119078865
Size: 19.95 MB
Format: PDF, Kindle
View: 3435
Download and Read
A comprehensive overview of high-performance pattern recognition techniques and approaches to Computational Molecular Biology This book surveys the developments of techniques and approaches on pattern recognition related to Computational Molecular Biology. Providing a broad coverage of the field, the authors cover fundamental and technical information on these techniques and approaches, as well as discussing their related problems. The text consists of twenty nine chapters, organized into seven parts: Pattern Recognition in Sequences, Pattern Recognition in Secondary Structures, Pattern Recognition in Tertiary Structures, Pattern Recognition in Quaternary Structures, Pattern Recognition in Microarrays, Pattern Recognition in Phylogenetic Trees, and Pattern Recognition in Biological Networks. Surveys the development of techniques and approaches on pattern recognition in biomolecular data Discusses pattern recognition in primary, secondary, tertiary and quaternary structures, as well as microarrays, phylogenetic trees and biological networks Includes case studies and examples to further illustrate the concepts discussed in the book Pattern Recognition in Computational Molecular Biology: Techniques and Approaches is a reference for practitioners and professional researches in Computer Science, Life Science, and Mathematics. This book also serves as a supplementary reading for graduate students and young researches interested in Computational Molecular Biology.

Comparative Gene Finding

Author: Marina Axelson-Fisk
Publisher: Springer
ISBN: 1447166930
Size: 56.35 MB
Format: PDF, ePub
View: 4362
Download and Read
This book presents a guide to building computational gene finders, and describes the state of the art in computational gene finding methods, with a focus on comparative approaches. Fully updated and expanded, this new edition examines next-generation sequencing (NGS) technology. The book also discusses conditional random fields, enhancing the broad coverage of topics spanning probability theory, statistics, information theory, optimization theory and numerical analysis. Features: introduces the fundamental terms and concepts in the field; discusses algorithms for single-species gene finding, and approaches to pairwise and multiple sequence alignments, then describes how the strengths in both areas can be combined to improve the accuracy of gene finding; explores the gene features most commonly captured by a computational gene model, and explains the basics of parameter training; illustrates how to implement a comparative gene finder; examines NGS techniques and how to build a genome annotation pipeline.