Download methods of applied mathematics with a matlab overview applied and numerical harmonic analysis in pdf or read methods of applied mathematics with a matlab overview applied and numerical harmonic analysis in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get methods of applied mathematics with a matlab overview applied and numerical harmonic analysis in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Methods Of Applied Mathematics With A Software Overview

Author: Jon H. Davis
Publisher: Birkhäuser
ISBN: 3319433709
Size: 10.95 MB
Format: PDF, ePub
View: 2290
Download and Read
Broadly organized around the applications of Fourier analysis, "Methods of Applied Mathematics with a MATLAB Overview" covers both classical applications in partial differential equations and boundary value problems, as well as the concepts and methods associated to the Laplace, Fourier, and discrete transforms. Transform inversion problems are also examined, along with the necessary background in complex variables. A final chapter treats wavelets, short-time Fourier analysis, and geometrically-based transforms. The computer program MATLAB is emphasized throughout, and an introduction to MATLAB is provided in an appendix. Rich in examples, illustrations, and exercises of varying difficulty, this text can be used for a one- or two-semester course and is ideal for students in pure and applied mathematics, physics, and engineering.

Introduction To Partial Differential Equations With Matlab

Author: Jeffery M. Cooper
Publisher: Springer Science & Business Media
ISBN: 1461217547
Size: 52.11 MB
Format: PDF, ePub, Mobi
View: 4070
Download and Read
Overview The subject of partial differential equations has an unchanging core of material but is constantly expanding and evolving. The core consists of solution methods, mainly separation of variables, for boundary value problems with constant coeffi cients in geometrically simple domains. Too often an introductory course focuses exclusively on these core problems and techniques and leaves the student with the impression that there is no more to the subject. Questions of existence, uniqueness, and well-posedness are ignored. In particular there is a lack of connection between the analytical side of the subject and the numerical side. Furthermore nonlinear problems are omitted because they are too hard to deal with analytically. Now, however, the availability of convenient, powerful computational software has made it possible to enlarge the scope of the introductory course. My goal in this text is to give the student a broader picture of the subject. In addition to the basic core subjects, I have included material on nonlinear problems and brief discussions of numerical methods. I feel that it is important for the student to see nonlinear problems and numerical methods at the beginning of the course, and not at the end when we run usually run out of time. Furthermore, numerical methods should be introduced for each equation as it is studied, not lumped together in a final chapter.

Computational Signal Processing With Wavelets

Author: Anthony Teolis
Publisher: Birkhäuser
ISBN: 331965747X
Size: 30.86 MB
Format: PDF, Mobi
View: 5529
Download and Read
This unique resource examines the conceptual, computational, and practical aspects of applied signal processing using wavelets. With this book, readers will understand and be able to use the power and utility of new wavelet methods in science and engineering problems and analysis. The text is written in a clear, accessible style avoiding unnecessary abstractions and details. From a computational perspective, wavelet signal processing algorithms are presented and applied to signal compression, noise suppression, and signal identification. Numerical illustrations of these computational techniques are further provided with interactive software (MATLAB code) that is available on the World Wide Web. Topics and Features Continuous wavelet and Gabor transforms Frame-based theory of discretization and reconstruction of analog signals is developed New and efficient "overcomplete" wavelet transform is introduced and applied Numerical illustrations with an object-oriented computational perspective using the Wavelet Signal Processing Workstation (MATLAB code) available This book is an excellent resource for information and computational tools needed to use wavelets in many types of signal processing problems. Graduates, professionals, and practitioners in engineering, computer science, geophysics, and applied mathematics will benefit from using the book and software tools. The present, softcover reprint is designed to make this classic textbook available to a wider audience. A self-contained text that is theoretically rigorous while maintaining contact with interesting applications. A particularly noteworthy a class of ‘overcomplete wavelets’. These functions are not orthonormal and they lead to many useful results. —Journal of Mathematical Psychology

Four Short Courses On Harmonic Analysis

Author: Brigitte Forster
Publisher: Springer Science & Business Media
ISBN: 0817648917
Size: 67.85 MB
Format: PDF, ePub, Mobi
View: 4395
Download and Read
Written by internationally renowned mathematicians, this state-of-the-art textbook examines four research directions in harmonic analysis and features some of the latest applications in the field. The work is the first one that combines spline theory, wavelets, frames, and time-frequency methods leading up to a construction of wavelets on manifolds other than Rn. Four Short Courses on Harmonic Analysis is intended as a graduate-level textbook for courses or seminars on harmonic analysis and its applications. The work is also an excellent reference or self-study guide for researchers and practitioners with diverse mathematical backgrounds working in different fields such as pure and applied mathematics, image and signal processing engineering, mathematical physics, and communication theory.

Convergence And Summability Of Fourier Transforms And Hardy Spaces

Author: Ferenc Weisz
Publisher: Birkhäuser
ISBN: 3319568140
Size: 72.32 MB
Format: PDF
View: 2116
Download and Read
This book investigates the convergence and summability of both one-dimensional and multi-dimensional Fourier transforms, as well as the theory of Hardy spaces. To do so, it studies a general summability method known as theta-summation, which encompasses all the well-known summability methods, such as the Fejér, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations. Following on the classic books by Bary (1964) and Zygmund (1968), this is the first book that considers strong summability introduced by current methodology. A further unique aspect is that the Lebesgue points are also studied in the theory of multi-dimensional summability. In addition to classical results, results from the past 20-30 years – normally only found in scattered research papers – are also gathered and discussed, offering readers a convenient “one-stop” source to support their work. As such, the book will be useful for researchers, graduate and postgraduate students alike.

Excursions In Harmonic Analysis Volume 3

Author: Radu Balan
Publisher: Birkhäuser
ISBN: 331913230X
Size: 46.76 MB
Format: PDF, ePub, Docs
View: 3106
Download and Read
This volume consists of contributions spanning a wide spectrum of harmonic analysis and its applications written by speakers at the February Fourier Talks from 2002 – 2013. Containing cutting-edge results by an impressive array of mathematicians, engineers, and scientists in academia, industry, and government, it will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, physics, and engineering. Topics covered include · spectral analysis and correlation; · radar and communications: design, theory, and applications; · sparsity · special topics in harmonic analysis. The February Fourier Talks are held annually at the Norbert Wiener Center for Harmonic Analysis and Applications. Located at the University of Maryland, College Park, the Norbert Wiener Center provides a state-of- the-art research venue for the broad emerging area of mathematical engineering.

Numerical Computing With Matlab

Author: Cleve B. Moler
Publisher: SIAM
ISBN: 0898716608
Size: 25.38 MB
Format: PDF, Docs
View: 383
Download and Read
A revised textbook for introductory courses in numerical methods, MATLAB and technical computing, which emphasises the use of mathematical software.

Numerical Methods

Author: Anne Greenbaum
Publisher: Princeton University Press
ISBN: 1400842670
Size: 30.66 MB
Format: PDF, Mobi
View: 6175
Download and Read
Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book also includes polynomial interpolation at Chebyshev points, use of the MATLAB package Chebfun, and a section on the fast Fourier transform. Supplementary materials are available online. Clear and concise exposition of standard numerical analysis topics Explores nontraditional topics, such as mathematical modeling and Monte Carlo methods Covers modern applications, including information retrieval and animation, and classical applications from physics and engineering Promotes understanding of computational results through MATLAB exercises Provides flexibility so instructors can emphasize mathematical or applied/computational aspects of numerical methods or a combination Includes recent results on polynomial interpolation at Chebyshev points and use of the MATLAB package Chebfun Short discussions of the history of numerical methods interspersed throughout Supplementary materials available online