Download microarray image analysis an algorithmic approach chapman hall crc computer science data analysis in pdf or read microarray image analysis an algorithmic approach chapman hall crc computer science data analysis in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get microarray image analysis an algorithmic approach chapman hall crc computer science data analysis in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Microarray Image Analysis

Author: Karl Fraser
Publisher: CRC Press
ISBN: 9781420091540
Size: 19.98 MB
Format: PDF, ePub, Mobi
View: 2326
Download and Read
To harness the high-throughput potential of DNA microarray technology, it is crucial that the analysis stages of the process are decoupled from the requirements of operator assistance. Microarray Image Analysis: An Algorithmic Approach presents an automatic system for microarray image processing to make this decoupling a reality. The proposed system integrates and extends traditional analytical-based methods and custom-designed novel algorithms. The book first explores a new technique that takes advantage of a multiview approach to image analysis and addresses the challenges of applying powerful traditional techniques, such as clustering, to full-scale microarray experiments. It then presents an effective feature identification approach, an innovative technique that renders highly detailed surface models, a new approach to subgrid detection, a novel technique for the background removal process, and a useful technique for removing "noise." The authors also develop an expectation–maximization (EM) algorithm for modeling gene regulatory networks from gene expression time series data. The final chapter describes the overall benefits of these techniques in the biological and computer sciences and reviews future research topics. This book systematically brings together the fields of image processing, data analysis, and molecular biology to advance the state of the art in this important area. Although the text focuses on improving the processes involved in the analysis of microarray image data, the methods discussed can be applied to a broad range of medical and computer vision analysis areas.

Combinatorial Inference In Geometric Data Analysis

Author: Brigitte Le Roux
Publisher: CRC Press
ISBN: 1351651331
Size: 75.48 MB
Format: PDF, ePub, Mobi
View: 7475
Download and Read
Geometric Data Analysis designates the approach of Multivariate Statistics that conceptualizes the set of observations as a Euclidean cloud of points. Combinatorial Inference in Geometric Data Analysis gives an overview of multidimensional statistical inference methods applicable to clouds of points that make no assumption on the process of generating data or distributions, and that are not based on random modelling but on permutation procedures recasting in a combinatorial framework. It focuses particularly on the comparison of a group of observations to a reference population (combinatorial test) or to a reference value of a location parameter (geometric test), and on problems of homogeneity, that is the comparison of several groups for two basic designs. These methods involve the use of combinatorial procedures to build a reference set in which we place the data. The chosen test statistics lead to original extensions, such as the geometric interpretation of the observed level, and the construction of a compatibility region. Features: Defines precisely the object under study in the context of multidimensional procedures, that is clouds of points Presents combinatorial tests and related computations with R and Coheris SPAD software Includes four original case studies to illustrate application of the tests Includes necessary mathematical background to ensure it is self–contained This book is suitable for researchers and students of multivariate statistics, as well as applied researchers of various scientific disciplines. It could be used for a specialized course taught at either master or PhD level.

Time Series Clustering And Classification

Author: Elizabeth Ann Maharaj
Publisher: CRC Press
ISBN: 0429603304
Size: 44.11 MB
Format: PDF
View: 6357
Download and Read
The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data. Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students. Features Provides an overview of the methods and applications of pattern recognition of time series Covers a wide range of techniques, including unsupervised and supervised approaches Includes a range of real examples from medicine, finance, environmental science, and more R and MATLAB code, and relevant data sets are available on a supplementary website

Music Data Analysis

Author: Claus Weihs
Publisher: CRC Press
ISBN: 1315353830
Size: 56.39 MB
Format: PDF, Docs
View: 2593
Download and Read
This book provides a comprehensive overview of music data analysis, from introductory material to advanced concepts. It covers various applications including transcription and segmentation as well as chord and harmony, instrument and tempo recognition. It also discusses the implementation aspects of music data analysis such as architecture, user interface and hardware. It is ideal for use in university classes with an interest in music data analysis. It also could be used in computer science and statistics as well as musicology.

Statistical Analysis Of Gene Expression Microarray Data

Author: Terry Speed
Publisher: CRC Press
ISBN: 9780203011232
Size: 77.26 MB
Format: PDF, ePub, Docs
View: 6177
Download and Read
Although less than a decade old, the field of microarray data analysis is now thriving and growing at a remarkable pace. Biologists, geneticists, and computer scientists as well as statisticians all need an accessible, systematic treatment of the techniques used for analyzing the vast amounts of data generated by large-scale gene expression studies. And there is arguably no group better qualified to do so than the authors of this book. Statistical Analysis of Gene Expression Microarray Data promises to become the definitive basic reference in the field. Under the editorship of Terry Speed, some of the world's most pre-eminent authorities have joined forces to present the tools, features, and problems associated with the analysis of genetic microarray data. These include:: Model-based analysis of oligonucleotide arrays, including expression index computation, outlier detection, and standard error applications Design and analysis of comparative experiments involving microarrays, with focus on \ two-color cDNA or long oligonucleotide arrays on glass slides Classification issues, including the statistical foundations of classification and an overview of different classifiers Clustering, partitioning, and hierarchical methods of analysis, including techniques related to principal components and singular value decomposition Although the technologies used in large-scale, high throughput assays will continue to evolve, statistical analysis will remain a cornerstone of their success and future development. Statistical Analysis of Gene Expression Microarray Data will help you meet the challenges of large, complex datasets and contribute to new methodological and computational advances.

Statistics And Data Analysis For Microarrays Using R And Bioconductor Second Edition

Author: Sorin Drăghici
Publisher: CRC Press
ISBN: 1439809763
Size: 10.11 MB
Format: PDF, ePub
View: 4157
Download and Read
Richly illustrated in color, Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition provides a clear and rigorous description of powerful analysis techniques and algorithms for mining and interpreting biological information. Omitting tedious details, heavy formalisms, and cryptic notations, the text takes a hands-on, example-based approach that teaches students the basics of R and microarray technology as well as how to choose and apply the proper data analysis tool to specific problems. New to the Second Edition Completely updated and double the size of its predecessor, this timely second edition replaces the commercial software with the open source R and Bioconductor environments. Fourteen new chapters cover such topics as the basic mechanisms of the cell, reliability and reproducibility issues in DNA microarrays, basic statistics and linear models in R, experiment design, multiple comparisons, quality control, data pre-processing and normalization, Gene Ontology analysis, pathway analysis, and machine learning techniques. Methods are illustrated with toy examples and real data and the R code for all routines is available on an accompanying CD-ROM. With all the necessary prerequisites included, this best-selling book guides students from very basic notions to advanced analysis techniques in R and Bioconductor. The first half of the text presents an overview of microarrays and the statistical elements that form the building blocks of any data analysis. The second half introduces the techniques most commonly used in the analysis of microarray data.

Contrast Data Mining

Author: Guozhu Dong
Publisher: CRC Press
ISBN: 1439854335
Size: 18.67 MB
Format: PDF, ePub
View: 1088
Download and Read
A Fruitful Field for Researching Data Mining Methodology and for Solving Real-Life Problems Contrast Data Mining: Concepts, Algorithms, and Applications collects recent results from this specialized area of data mining that have previously been scattered in the literature, making them more accessible to researchers and developers in data mining and other fields. The book not only presents concepts and techniques for contrast data mining, but also explores the use of contrast mining to solve challenging problems in various scientific, medical, and business domains. Learn from Real Case Studies of Contrast Mining Applications In this volume, researchers from around the world specializing in architecture engineering, bioinformatics, computer science, medicine, and systems engineering focus on the mining and use of contrast patterns. They demonstrate many useful and powerful capabilities of a variety of contrast mining techniques and algorithms, including tree-based structures, zero-suppressed binary decision diagrams, data cube representations, and clustering algorithms. They also examine how contrast mining is used in leukemia characterization, discriminative gene transfer and microarray analysis, computational toxicology, spatial and image data classification, voting analysis, heart disease prediction, crime analysis, understanding customer behavior, genetic algorithms, and network security.

Exploratory Data Analysis With Matlab Second Edition

Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1439812217
Size: 61.93 MB
Format: PDF, ePub
View: 3799
Download and Read
Since the publication of the bestselling first edition, many advances have been made in exploratory data analysis (EDA). Covering innovative approaches for dimensionality reduction, clustering, and visualization, Exploratory Data Analysis with MATLAB®, Second Edition uses numerous examples and applications to show how the methods are used in practice. New to the Second Edition Discussions of nonnegative matrix factorization, linear discriminant analysis, curvilinear component analysis, independent component analysis, and smoothing splines An expanded set of methods for estimating the intrinsic dimensionality of a data set Several clustering methods, including probabilistic latent semantic analysis and spectral-based clustering Additional visualization methods, such as a rangefinder boxplot, scatterplots with marginal histograms, biplots, and a new method called Andrews’ images Instructions on a free MATLAB GUI toolbox for EDA Like its predecessor, this edition continues to focus on using EDA methods, rather than theoretical aspects. The MATLAB codes for the examples, EDA toolboxes, data sets, and color versions of all figures are available for download at http://pi-sigma.info

Rough Fuzzy Image Analysis

Author: Sankar K. Pal
Publisher: CRC Press
ISBN: 9781439803301
Size: 26.36 MB
Format: PDF, Kindle
View: 5059
Download and Read
Fuzzy sets, near sets, and rough sets are useful and important stepping stones in a variety of approaches to image analysis. These three types of sets and their various hybridizations provide powerful frameworks for image analysis. Emphasizing the utility of fuzzy, near, and rough sets in image analysis, Rough Fuzzy Image Analysis: Foundations and Methodologies introduces the fundamentals and applications in the state of the art of rough fuzzy image analysis. In the first chapter, the distinguished editors explain how fuzzy, near, and rough sets provide the basis for the stages of pictorial pattern recognition: image transformation, feature extraction, and classification. The text then discusses hybrid approaches that combine fuzzy sets and rough sets in image analysis, illustrates how to perform image analysis using only rough sets, and describes tolerance spaces and a perceptual systems approach to image analysis. It also presents a free, downloadable implementation of near sets using the Near Set Evaluation and Recognition (NEAR) system, which visualizes concepts from near set theory. In addition, the book covers an array of applications, particularly in medical imaging involving breast cancer diagnosis, laryngeal pathology diagnosis, and brain MR segmentation. Edited by two leading researchers and with contributions from some of the best in the field, this volume fully reflects the diversity and richness of rough fuzzy image analysis. It deftly examines the underlying set theories as well as the diverse methods and applications.

Handbook Of Data Structures And Applications

Author: Dinesh P. Mehta
Publisher: CRC Press
ISBN: 9781420035179
Size: 10.70 MB
Format: PDF, ePub, Docs
View: 5801
Download and Read
Although there are many advanced and specialized texts and handbooks on algorithms, until now there was no book that focused exclusively on the wide variety of data structures that have been reported in the literature. The Handbook of Data Structures and Applications responds to the needs of students, professionals, and researchers who need a mainstream reference on data structures by providing a comprehensive survey of data structures of various types. Divided into seven parts, the text begins with a review of introductory material, followed by a discussion of well-known classes of data structures, Priority Queues, Dictionary Structures, and Multidimensional structures. The editors next analyze miscellaneous data structures, which are well-known structures that elude easy classification. The book then addresses mechanisms and tools that were developed to facilitate the use of data structures in real programs. It concludes with an examination of the applications of data structures. The Handbook is invaluable in suggesting new ideas for research in data structures, and for revealing application contexts in which they can be deployed. Practitioners devising algorithms will gain insight into organizing data, allowing them to solve algorithmic problems more efficiently.