Download microsoft azure machine learning in pdf or read microsoft azure machine learning in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get microsoft azure machine learning in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Microsoft Azure Machine Learning

Author: Sumit Mund
Publisher: Packt Publishing Ltd
ISBN: 1784398519
Size: 20.50 MB
Format: PDF
View: 1663
Download and Read
This book provides you with the skills necessary to get started with Azure Machine Learning to build predictive models as quickly as possible, in a very intuitive way, whether you are completely new to predictive analysis or an existing practitioner. The book starts by exploring ML Studio, the browser-based development environment, and explores the first step—data exploration and visualization. You will then build different predictive models using both supervised and unsupervised algorithms, including a simple recommender system. The focus then shifts to learning how to deploy a model to production and publishing it as an API. The book ends with a couple of case studies using all the concepts and skills you have learned throughout the book to solve real-world problems.

Predictive Analytics With Microsoft Azure Machine Learning 2nd Edition

Author: Valentine Fontama
Publisher: Apress
ISBN: 1484212002
Size: 41.81 MB
Format: PDF, ePub
View: 1424
Download and Read
Predictive Analytics with Microsoft Azure Machine Learning, Second Edition is a practical tutorial introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book provides a thorough overview of the Microsoft Azure Machine Learning service released for general availability on February 18th, 2015 with practical guidance for building recommenders, propensity models, and churn and predictive maintenance models. The authors use task oriented descriptions and concrete end-to-end examples to ensure that the reader can immediately begin using this new service. The book describes all aspects of the service from data ingress to applying machine learning, evaluating the models, and deploying them as web services. Learn how you can quickly build and deploy sophisticated predictive models with the new Azure Machine Learning from Microsoft. What’s New in the Second Edition? Five new chapters have been added with practical detailed coverage of: Python Integration – a new feature announced February 2015 Data preparation and feature selection Data visualization with Power BI Recommendation engines Selling your models on Azure Marketplace

Predictive Analytics With Microsoft Azure Machine Learning

Author: Valentine Fontama
Publisher: Apress
ISBN: 148420445X
Size: 36.50 MB
Format: PDF, Docs
View: 2509
Download and Read
Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft.

Microsoft Azure Essentials Azure Machine Learning

Author: Jeff Barnes
Publisher: Microsoft Press
ISBN: 073569818X
Size: 36.37 MB
Format: PDF, ePub, Mobi
View: 5341
Download and Read
Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.

Exam Ref 70 774 Perform Cloud Data Science With Azure Machine Learning

Author: Ginger Grant
Publisher: Microsoft Press
ISBN: 013484968X
Size: 20.84 MB
Format: PDF
View: 3543
Download and Read
Prepare for Microsoft Exam 70-774–and help demonstrate your real-world mastery of performing key data science activities with Azure Machine Learning services. Designed for experienced IT professionals ready to advance their status, Exam Ref focuses on the critical thinking and decision-making acumen needed for success at the MCSA level. Focus on the expertise measured by these objectives: Prepare data for analysis in Azure Machine Learning and export from Azure Machine Learning Develop machine learning models Operationalize and manage Azure Machine Learning Services Use other services for machine learning This Microsoft Exam Ref: Organizes its coverage by exam objectives Features strategic, what-if scenarios to challenge you Assumes you are familiar with Azure data services, machine learning concepts, and common data science processes About the Exam Exam 70-774 focuses on skills and knowledge needed to prepare data for analysis with Azure Machine Learning; find key variables describing your data’s behavior; develop models and identify optimal algorithms; train, validate, deploy, manage, and consume Azure Machine Learning Models; and leverage related services and APIs. About Microsoft Certification Passing this exam as well as Exam 70-773: Analyzing Big Data with Microsoft R earns your MCSA: Machine Learning certifi¿cation, demonstrating your expertise in operationalizing Microsoft Azure machine learning and Big Data with R Server and SQL R Services. See full details at: microsoft.com/learning

Azure Machine Learning Studio For The Non Data Scientist

Author: Michael Washington
Publisher: Createspace Independent Publishing Platform
ISBN: 9781548871123
Size: 59.71 MB
Format: PDF, ePub
View: 3733
Download and Read
Creating predictive models is no longer relegated to data scientists when you use tools such as the Microsoft Azure Machine Learning Studio. Azure Machine Learning Studio is a web browser-based application that allows you to create and deploy predictive models as web services that can be consumed by custom applications and other tools such as Microsoft Excel. With this book, you will learn how to create predictive experiments, operationalize them using Excel and Angular .Net Core applications, and create retraining programs to improve predictive results. Table of Contents Chapter 1: The Author is Not a Data Scientist * Why Do We Need Predictive Modeling? * An Introduction to Get You Started Chapter 2: An End-To-End Azure Machine Learning Studio Application * Create an Azure Machine Learning Workspace * Create An Experiment * Select Columns * Split Data * Train The Model * Score The Model * Evaluate The Model * Create A Predictive Web Service * Consume The Model Using Excel Chapter 3: An Angular 2 .Net Core Application Consuming an Azure Machine Learning Model * The Application * Creating The Application * Create The .Net Core Application * Add PrimeNG * Add The Database * Create Code To Call Azure Machine Learning Web Service * Create The Angular Application * Saving Data * Viewing Data Chapter 4: Retraining an Azure Machine Learning Application * The Retraining Process * Prepare The Training Data * Set-up An Azure Storage Account * Create The Batch Retraining Program * Get Required Values * Add A New Endpoint And Patch It * Consume The New Endpoint

Deep Learning With Azure

Author: Mathew Salvaris
Publisher: Apress
ISBN: 1484236793
Size: 15.25 MB
Format: PDF, ePub, Mobi
View: 5599
Download and Read
Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI? Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll Learn Become familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AI Use pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more) Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolving Discover the options for training and operationalizing deep learning models on Azure Who This Book Is For Professional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful.

Mengenal Microsoft Azure Ml

Author: Agus Kurniawan
Publisher: Elex Media Komputindo
ISBN: 6020289745
Size: 76.51 MB
Format: PDF, Mobi
View: 2585
Download and Read
Era ledakan data sudah dimulai. Dengan meningkatnya data ini, kebutuhan akan analisis terhadap data ini juga akan meningkat. Machine Learning digunakan untuk memperoleh insight dari kumpulan data. Buku ini didesain dan dirancang untuk membantu para profesional dalam membangun aplikasi berbasis Microsoft Azure dan Machine Learning. Topik bahasan yang dijelaskan dalam buku ini adalah: • Mengenal Azure Machine Learning • Memprogram Machine Learning • Bekerja dengan Azure Machine Learning • Hands-On-Lab Azure Machine Learning • Kustomisasi Azure Machine Learning dengan R dan Python

Microsoft Azure

Author: Marshall Copeland
Publisher: Apress
ISBN: 1484210433
Size: 68.65 MB
Format: PDF, ePub
View: 2381
Download and Read
Written for IT and business professionals, this book provides the technical and business insight needed to plan, deploy and manage the services provided by the Microsoft Azure cloud. Find out how to integrate the infrastructure-as-a-service (IaaS) and platform-as-a-service (PaaS) models with your existing business infrastructure while maximizing availability, ensuring continuity and safety of your data, and keeping costs to a minimum. The book starts with an introduction to Microsoft Azure and how it differs from Office 365—Microsoft’s ‘other’ cloud. You'll also get a useful overview of the services available. Part II then takes you through setting up your Azure account, and gets you up-and-running on some of the core Azure services, including creating web sites and virtual machines, and choosing between fully cloud-based and hybrid storage solutions, depending on your needs. Part III now takes an in-depth look at how to integrate Azure with your existing infrastructure. The authors, Anthony Puca, Mike Manning, Brent Rush, Marshall Copeland and Julian Soh, bring their depth of experience in cloud technology and customer support to guide you through the whole process, through each layer of your infrastructure from networking to operations. High availability and disaster recovery are the topics on everyone’s minds when considering a move to the cloud, and this book provides key insights and step-by-step guidance to help you set up and manage your resources correctly to optimize for these scenarios. You’ll also get expert advice on migrating your existing VMs to Azure using InMage, mail-in and the best 3rd party tools available, helping you ensure continuity of service with minimum disruption to the business. In the book’s final chapters, you’ll find cutting edge examples of cloud technology in action, from machine learning to business intelligence, for a taste of some exciting ways your business could benefit from your new Microsoft Azure deployment.

Datenanalyse Mit Python

Author: Wes McKinney
Publisher: O'Reilly
ISBN: 3960102143
Size: 36.94 MB
Format: PDF
View: 7320
Download and Read
Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.