Download mixed effects models for the population approach models tasks methods and tools chapman hall crc biostatistics series in pdf or read mixed effects models for the population approach models tasks methods and tools chapman hall crc biostatistics series in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get mixed effects models for the population approach models tasks methods and tools chapman hall crc biostatistics series in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Mixed Effects Models For The Population Approach

Author: Marc Lavielle
Publisher: CRC Press
ISBN: 1482226502
Size: 44.46 MB
Format: PDF, Docs
View: 4757
Download and Read
Wide-Ranging Coverage of Parametric Modeling in Linear and Nonlinear Mixed Effects Models Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools presents a rigorous framework for describing, implementing, and using mixed effects models. With these models, readers can perform parameter estimation and modeling across a whole population of individuals at the same time. Easy-to-Use Techniques and Tools for Real-World Data Modeling The book first shows how the framework allows model representation for different data types, including continuous, categorical, count, and time-to-event data. This leads to the use of generic methods, such as the stochastic approximation of the EM algorithm (SAEM), for modeling these diverse data types. The book also covers other essential methods, including Markov chain Monte Carlo (MCMC) and importance sampling techniques. The author uses publicly available software tools to illustrate modeling tasks. Methods are implemented in Monolix, and models are visually explored using Mlxplore and simulated using Simulx. Careful Balance of Mathematical Representation and Practical Implementation This book takes readers through the whole modeling process, from defining/creating a parametric model to performing tasks on the model using various mathematical methods. Statisticians and mathematicians will appreciate the rigorous representation of the models and theoretical properties of the methods while modelers will welcome the practical capabilities of the tools. The book is also useful for training and teaching in any field where population modeling occurs.

Handbook Of Methods For Designing Monitoring And Analyzing Dose Finding Trials

Author: John O'Quigley
Publisher: CRC Press
ISBN: 1351648020
Size: 73.93 MB
Format: PDF, ePub
View: 4396
Download and Read
Handbook of Methods for Designing, Monitoring, and Analyzing Dose-Finding Trials gives a thorough presentation of state-of-the-art methods for early phase clinical trials. The methodology of clinical trials has advanced greatly over the last 20 years and, arguably, nowhere greater than that of early phase studies. The need to accelerate drug development in a rapidly evolving context of targeted therapies, immunotherapy, combination treatments and complex group structures has provided the stimulus to these advances. Typically, we deal with very small samples, sequential methods that need to be efficient, while, at the same time adhering to ethical principles due to the involvement of human subjects. Statistical inference is difficult since the standard techniques of maximum likelihood do not usually apply as a result of model misspecification and parameter estimates lying on the boundary of the parameter space. Bayesian methods play an important part in overcoming these difficulties, but nonetheless, require special consideration in this particular context. The purpose of this handbook is to provide an expanded summary of the field as it stands and also, through discussion, provide insights into the thinking of leaders in the field as to the potential developments of the years ahead. With this goal in mind we present: An introduction to the field for graduate students and novices A basis for more established researchers from which to build A collection of material for an advanced course in early phase clinical trials A comprehensive guide to available methodology for practicing statisticians on the design and analysis of dose-finding experiments An extensive guide for the multiple comparison and modeling (MCP-Mod) dose-finding approach, adaptive two-stage designs for dose finding, as well as dose–time–response models and multiple testing in the context of confirmatory dose-finding studies.? John O’Quigley is a professor of mathematics and research director at the French National Institute for Health and Medical Research based at the Faculty of Mathematics, University Pierre and Marie Curie in Paris, France. He is author of Proportional Hazards Regression and has published extensively in the field of dose finding. Alexia Iasonos is an associate attending biostatistician at the Memorial Sloan Kettering Cancer Center in New York. She has over one hundred publications in the leading statistical and clinical journals on the methodology and design of early phase clinical trials. Dr. Iasonos has wide experience in the actual implementation of model based early phase trials and has given courses in scientific meetings internationally. Björn Bornkamp is a statistical methodologist at Novartis in Basel, Switzerland, researching and implementing dose-finding designs in Phase II clinical trials. He is one of the co-developers of the MCP-Mod methodology for dose finding and main author of the DoseFinding R package. He has published numerous papers on dose finding, nonlinear models and Bayesian statistics, and in 2013 won the Royal Statistical Society award for statistical excellence in the pharmaceutical industry. ? ?

Advances In Knowledge Discovery And Data Mining

Author: Tru Cao
Publisher: Springer
ISBN: 331918038X
Size: 43.70 MB
Format: PDF, Mobi
View: 4490
Download and Read
This two-volume set, LNAI 9077 + 9078, constitutes the refereed proceedings of the 19th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2015, held in Ho Chi Minh City, Vietnam, in May 2015. The proceedings contain 117 paper carefully reviewed and selected from 405 submissions. They have been organized in topical sections named: social networks and social media; classification; machine learning; applications; novel methods and algorithms; opinion mining and sentiment analysis; clustering; outlier and anomaly detection; mining uncertain and imprecise data; mining temporal and spatial data; feature extraction and selection; mining heterogeneous, high-dimensional and sequential data; entity resolution and topic-modeling; itemset and high-performance data mining; and recommendations.

Environmental And Ecological Statistics With R

Author: Song S. Qian
Publisher: CRC Press
ISBN: 9781420062083
Size: 73.57 MB
Format: PDF, ePub
View: 3470
Download and Read
Emphasizing the inductive nature of statistical thinking, Environmental and Ecological Statistics with R connects applied statistics to the environmental and ecological fields. It follows the general approach to solving a statistical modeling problem, covering model specification, parameter estimation, and model evaluation. The author uses many examples to illustrate the statistical models and presents R implementations of the models. The book first builds a foundation for conducting a simple data analysis task, such as exploratory data analysis and fitting linear regression models. It then focuses on statistical modeling, including linear and nonlinear models, classification and regression tree, and the generalized linear model. The text also discusses the use of simulation for model checking, provides tools for a critical assessment of the developed model, and explores multilevel regression models, which are a class of models that can have a broad impact in environmental and ecological data analysis. Based on courses taught by the author at Duke University, this book focuses on statistical modeling and data analysis for environmental and ecological problems. By guiding readers through the processes of scientific problem solving and statistical model development, it eases the transition from scientific hypothesis to statistical model.


Author: Wayne W. Daniel
Publisher: Wiley
ISBN: 1119282373
Size: 22.44 MB
Format: PDF, ePub
View: 3404
Download and Read
The ability to analyze and interpret enormous amounts of data has become a prerequisite for success in allied healthcare and the health sciences. Now in its 11th edition, Biostatistics: A Foundation for Analysis in the Health Sciences continues to offer in-depth guidance toward biostatistical concepts, techniques, and practical applications in the modern healthcare setting. Comprehensive in scope yet detailed in coverage, this text helps students understand--and appropriately use--probability distributions, sampling distributions, estimation, hypothesis testing, variance analysis, regression, correlation analysis, and other statistical tools fundamental to the science and practice of medicine. Clearly-defined pedagogical tools help students stay up-to-date on new material, and an emphasis on statistical software allows faster, more accurate calculation while putting the focus on the underlying concepts rather than the math. Students develop highly relevant skills in inferential and differential statistical techniques, equipping them with the ability to organize, summarize, and interpret large bodies of data. Suitable for both graduate and advanced undergraduate coursework, this text retains the rigor required for use as a professional reference.

Causal Inference For Statistics Social And Biomedical Sciences

Author: Guido W. Imbens
Publisher: Cambridge University Press
ISBN: 1316094391
Size: 75.61 MB
Format: PDF
View: 6410
Download and Read
Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding to the outcome that would be realized if a subject were exposed to a particular treatment or regime. In this approach, causal effects are comparisons of such potential outcomes. The fundamental problem of causal inference is that we can only observe one of the potential outcomes for a particular subject. The authors discuss how randomized experiments allow us to assess causal effects and then turn to observational studies. They lay out the assumptions needed for causal inference and describe the leading analysis methods, including matching, propensity-score methods, and instrumental variables. Many detailed applications are included, with special focus on practical aspects for the empirical researcher.

Wahrscheinlichkeit Statistik Und Wahrheit

Author: Richard Von Mises
Publisher: Springer-Verlag
ISBN: 3662418630
Size: 75.48 MB
Format: PDF, ePub
View: 3265
Download and Read
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.