Download modern data science with r chapman hall crc texts in statistical science in pdf or read modern data science with r chapman hall crc texts in statistical science in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get modern data science with r chapman hall crc texts in statistical science in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Modern Data Science With R

Author: Benjamin S. Baumer
Publisher: CRC Press
ISBN: 1498724493
Size: 49.48 MB
Format: PDF, ePub, Docs
View: 645
Download and Read
Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world problems with data. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling statistical questions. Contemporary data science requires a tight integration of knowledge from statistics, computer science, mathematics, and a domain of application. This book will help readers with some background in statistics and modest prior experience with coding develop and practice the appropriate skills to tackle complex data science projects. The book features a number of exercises and has a flexible organization conducive to teaching a variety of semester courses.

Graphics For Statistics And Data Analysis With R

Author: Kevin J Keen
Publisher: CRC Press
ISBN: 1584880872
Size: 75.73 MB
Format: PDF, Docs
View: 6732
Download and Read
Graphics for Statistics and Data Analysis with R presents the basic principles of sound graphical design and applies these principles to engaging examples using the graphical functions available in R. It offers a wide array of graphical displays for the presentation of data, including modern tools for data visualization and representation. The book considers graphical displays of a single discrete variable, a single continuous variable, and then two or more of each of these. It includes displays and the R code for producing the displays for the dot chart, bar chart, pictographs, stemplot, boxplot, and variations on the quantile-quantile plot. The author discusses nonparametric and parametric density estimation, diagnostic plots for the simple linear regression model, polynomial regression, and locally weighted polynomial regression for producing a smooth curve through data on a scatterplot. The last chapter illustrates visualizing multivariate data with examples using Trellis graphics. Showing how to use graphics to display or summarize data, this text provides best practice guidelines for producing and choosing among graphical displays. It also covers the most effective graphing functions in R. R code is available for download on the book’s website.

Analysis Of Categorical Data With R

Author: Christopher R. Bilder
Publisher: CRC Press
ISBN: 1439855676
Size: 36.64 MB
Format: PDF, ePub, Mobi
View: 682
Download and Read
Learn How to Properly Analyze Categorical Data Analysis of Categorical Data with R presents a modern account of categorical data analysis using the popular R software. It covers recent techniques of model building and assessment for binary, multicategory, and count response variables and discusses fundamentals, such as odds ratio and probability estimation. The authors give detailed advice and guidelines on which procedures to use and why to use them. The Use of R as Both a Data Analysis Method and a Learning Tool Requiring no prior experience with R, the text offers an introduction to the essential features and functions of R. It incorporates numerous examples from medicine, psychology, sports, ecology, and other areas, along with extensive R code and output. The authors use data simulation in R to help readers understand the underlying assumptions of a procedure and then to evaluate the procedure’s performance. They also present many graphical demonstrations of the features and properties of various analysis methods. Web Resource The data sets and R programs from each example are available at The programs include code used to create every plot and piece of output. Many of these programs contain code to demonstrate additional features or to perform more detailed analyses than what is in the text. Designed to be used in tandem with the book, the website also uniquely provides videos of the authors teaching a course on the subject. These videos include live, in-class recordings, which instructors may find useful in a blended or flipped classroom setting. The videos are also suitable as a substitute for a short course.

Linear Models With R Second Edition

Author: Julian J. Faraway
Publisher: CRC Press
ISBN: 1439887330
Size: 13.44 MB
Format: PDF, Mobi
View: 4969
Download and Read
A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.

Statistical Regression And Classification

Author: Norman Matloff
Publisher: Chapman & Hall/CRC
ISBN: 9781498710916
Size: 24.79 MB
Format: PDF, ePub, Docs
View: 2171
Download and Read
Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression: * A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods. * Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case. * In view of the voluminous nature of many modern datasets, there is a chapter on Big Data. * Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems. * Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics. * More than 75 examples using real data. The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis. Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.

Introduction To Probability With R

Author: Kenneth Baclawski
Publisher: CRC Press
ISBN: 9781420065220
Size: 58.11 MB
Format: PDF, Mobi
View: 4278
Download and Read
Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.

Analyzing Baseball Data With R

Author: Max Marchi
Publisher: CRC Press
ISBN: 1466570237
Size: 13.19 MB
Format: PDF, ePub, Docs
View: 6482
Download and Read
With its flexible capabilities and open-source platform, R has become a major tool for analyzing detailed, high-quality baseball data. Analyzing Baseball Data with R provides an introduction to R for sabermetricians, baseball enthusiasts, and students interested in exploring the rich sources of baseball data. It equips readers with the necessary skills and software tools to perform all of the analysis steps, from gathering the datasets and entering them in a convenient format to visualizing the data via graphs to performing a statistical analysis. The authors first present an overview of publicly available baseball datasets and a gentle introduction to the type of data structures and exploratory and data management capabilities of R. They also cover the traditional graphics functions in the base package and introduce more sophisticated graphical displays available through the lattice and ggplot2 packages. Much of the book illustrates the use of R through popular sabermetrics topics, including the Pythagorean formula, runs expectancy, career trajectories, simulation of games and seasons, patterns of streaky behavior of players, and fielding measures. Each chapter contains exercises that encourage readers to perform their own analyses using R. All of the datasets and R code used in the text are available online. This book helps readers answer questions about baseball teams, players, and strategy using large, publically available datasets. It offers detailed instructions on downloading the datasets and putting them into formats that simplify data exploration and analysis. Through the book’s various examples, readers will learn about modern sabermetrics and be able to conduct their own baseball analyses.

An Introduction To Statistical Inference And Its Applications With R

Author: Michael W. Trosset
Publisher: CRC Press
ISBN: 9781584889489
Size: 18.52 MB
Format: PDF
View: 7703
Download and Read
Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures, and draw pseudorandom samples—not to perform entire analyses. After discussing the importance of chance in experimentation, the text develops basic tools of probability. The plug-in principle then provides a transition from populations to samples, motivating a variety of summary statistics and diagnostic techniques. The heart of the text is a careful exposition of point estimation, hypothesis testing, and confidence intervals. The author then explains procedures for 1- and 2-sample location problems, analysis of variance, goodness-of-fit, and correlation and regression. He concludes by discussing the role of simulation in modern statistical inference. Focusing on the assumptions that underlie popular statistical methods, this textbook explains how and why these methods are used to analyze experimental data.

Discrete Data Analysis With R

Author: Michael Friendly
Publisher: CRC Press
ISBN: 1498725856
Size: 41.53 MB
Format: PDF, Mobi
View: 687
Download and Read
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical Data Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical methods for exploring data, spotting unusual features, visualizing fitted models, and presenting results. The book is designed for advanced undergraduate and graduate students in the social and health sciences, epidemiology, economics, business, statistics, and biostatistics as well as researchers, methodologists, and consultants who can use the methods with their own data and analyses. Along with describing the necessary statistical theory, the authors illustrate the practical application of the techniques to a large number of substantive problems, including how to organize data, conduct an analysis, produce informative graphs, and evaluate what the graphs reveal about the data. The first part of the book contains introductory material on graphical methods for discrete data, basic R skills, and methods for fitting and visualizing one-way discrete distributions. The second part focuses on simple, traditional nonparametric tests and exploratory methods for visualizing patterns of association in two-way and larger frequency tables. The final part of the text discusses model-based methods for the analysis of discrete data. Web Resource The data sets and R software used, including the authors’ own vcd and vcdExtra packages, are available at

Statistical Learning And Data Science

Author: Mireille Gettler Summa
Publisher: CRC Press
ISBN: 143986764X
Size: 58.82 MB
Format: PDF, Docs
View: 4505
Download and Read
Data analysis is changing fast. Driven by a vast range of application domains and affordable tools, machine learning has become mainstream. Unsupervised data analysis, including cluster analysis, factor analysis, and low dimensionality mapping methods continually being updated, have reached new heights of achievement in the incredibly rich data world that we inhabit. Statistical Learning and Data Science is a work of reference in the rapidly evolving context of converging methodologies. It gathers contributions from some of the foundational thinkers in the different fields of data analysis to the major theoretical results in the domain. On the methodological front, the volume includes conformal prediction and frameworks for assessing confidence in outputs, together with attendant risk. It illustrates a wide range of applications, including semantics, credit risk, energy production, genomics, and ecology. The book also addresses issues of origin and evolutions in the unsupervised data analysis arena, and presents some approaches for time series, symbolic data, and functional data. Over the history of multidimensional data analysis, more and more complex data have become available for processing. Supervised machine learning, semi-supervised analysis approaches, and unsupervised data analysis, provide great capability for addressing the digital data deluge. Exploring the foundations and recent breakthroughs in the field, Statistical Learning and Data Science demonstrates how data analysis can improve personal and collective health and the well-being of our social, business, and physical environments.