Download modern mathematical statistics with applications springer texts in statistics in pdf or read modern mathematical statistics with applications springer texts in statistics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get modern mathematical statistics with applications springer texts in statistics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Modern Mathematical Statistics With Applications

Author: Jay L. Devore
Publisher: Springer Science & Business Media
ISBN: 146140391X
Size: 58.63 MB
Format: PDF, Kindle
View: 4296
Download and Read
Modern Mathematical Statistics with Applications, Second Edition strikes a balance between mathematical foundations and statistical practice. In keeping with the recommendation that every math student should study statistics and probability with an emphasis on data analysis, accomplished authors Jay Devore and Kenneth Berk make statistical concepts and methods clear and relevant through careful explanations and a broad range of applications involving real data. The main focus of the book is on presenting and illustrating methods of inferential statistics that are useful in research. It begins with a chapter on descriptive statistics that immediately exposes the reader to real data. The next six chapters develop the probability material that bridges the gap between descriptive and inferential statistics. Point estimation, inferences based on statistical intervals, and hypothesis testing are then introduced in the next three chapters. The remainder of the book explores the use of this methodology in a variety of more complex settings. This edition includes a plethora of new exercises, a number of which are similar to what would be encountered on the actuarial exams that cover probability and statistics. Representative applications include investigating whether the average tip percentage in a particular restaurant exceeds the standard 15%, considering whether the flavor and aroma of Champagne are affected by bottle temperature or type of pour, modeling the relationship between college graduation rate and average SAT score, and assessing the likelihood of O-ring failure in space shuttle launches as related to launch temperature.

A Modern Introduction To Probability And Statistics

Author: F.M. Dekking
Publisher: Springer Science & Business Media
ISBN: 1846281687
Size: 47.58 MB
Format: PDF, Docs
View: 5042
Download and Read
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books

Basics Of Modern Mathematical Statistics

Author: Vladimir Spokoiny
Publisher: Springer
ISBN: 3642399096
Size: 42.80 MB
Format: PDF
View: 2764
Download and Read
This textbook provides a unified and self-contained presentation of the main approaches to and ideas of mathematical statistics. It collects the basic mathematical ideas and tools needed as a basis for more serious study or even independent research in statistics. The majority of existing textbooks in mathematical statistics follow the classical asymptotic framework. Yet, as modern statistics has changed rapidly in recent years, new methods and approaches have appeared. The emphasis is on finite sample behavior, large parameter dimensions, and model misspecifications. The present book provides a fully self-contained introduction to the world of modern mathematical statistics, collecting the basic knowledge, concepts and findings needed for doing further research in the modern theoretical and applied statistics. This textbook is primarily intended for graduate and postdoc students and young researchers who are interested in modern statistical methods.

Stat Labs

Author: Deborah Nolan
Publisher: Springer Science & Business Media
ISBN: 0387227431
Size: 70.72 MB
Format: PDF, ePub, Mobi
View: 1151
Download and Read
Integrating the theory and practice of statistics through a series of case studies, each lab introduces a problem, provides some scientific background, suggests investigations for the data, and provides a summary of the theory used in each case. Aimed at upper-division students.

All Of Statistics

Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387217363
Size: 19.71 MB
Format: PDF, Kindle
View: 3980
Download and Read
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Mathematical Statistics

Author: George R. Terrell
Publisher: Springer Science & Business Media
ISBN: 0387986219
Size: 24.43 MB
Format: PDF
View: 472
Download and Read
This textbook introduces the mathematical concepts & methods that underlie statistics. The course is unified, in the sense that no prior knowledge of probability theory is assumed, being developed as needed. The book is committed to both a high level of mathematical seriousness & to an intimate connection with application. The text is aimed at the upper undergraduate or the beginning Masters program level. It assumes the usual two-year college mathematics sequence, including an introduction to multiple integrals, matrix algebra & infinite series.

Mathematical Statistics Exercises And Solutions

Author: Jun Shao
Publisher: Springer Science & Business Media
ISBN: 0387282769
Size: 20.98 MB
Format: PDF
View: 3287
Download and Read
The exercises are grouped into seven chapters with titles matching those in the author's Mathematical Statistics. Can also be used as a stand-alone because exercises and solutions are comprehensible independently of their source, and notation and terminology are explained in the front of the book. Suitable for self-study for a statistics Ph.D. qualifying exam.

Probability Via Expectation

Author: Peter Whittle
Publisher: Springer Science & Business Media
ISBN: 9780387989556
Size: 37.42 MB
Format: PDF, Docs
View: 3273
Download and Read
The third edition of 1992 constituted a major reworking of the original text, and the preface to that edition still represents my position on the issues that stimulated me first to write. The present edition contains a number of minor modifications and corrections, but its principal innovation is the addition of material on dynamic programming, optimal allocation, option pricing and large deviations. These are substantial topics, but ones into which one can gain an insight with less labour than is generally thought. They all involve the expectation concept in an essential fashion, even the treatment of option pricing, which seems initially to forswear expectation in favour of an arbitrage criterion. I am grateful to readers and to Springer-Verlag for their continuing interest in the approach taken in this work. Peter Whittle Preface to the Third Edition This book is a complete revision of the earlier work Probability which appeared in 1970. While revised so radically and incorporating so much new material as to amount to a new text, it preserves both the aim and the approach of the original. That aim was stated as the provision of a 'first text in probability, demanding a reasonable but not extensive knowledge of mathematics, and taking the reader to what one might describe as a good intermediate level' . In doing so it attempted to break away from stereotyped applications, and consider applications of a more novel and significant character.

Intuitive Introductory Statistics

Author: Douglas A. Wolfe
Publisher: Springer
ISBN: 3319560727
Size: 34.46 MB
Format: PDF, Kindle
View: 3392
Download and Read
This textbook is designed to give an engaging introduction to statistics and the art of data analysis. The unique scope includes, but also goes beyond, classical methodology associated with the normal distribution. What if the normal model is not valid for a particular data set? This cutting-edge approach provides the alternatives. It is an introduction to the world and possibilities of statistics that uses exercises, computer analyses, and simulations throughout the core lessons. These elementary statistical methods are intuitive. Counting and ranking features prominently in the text. Nonparametric methods, for instance, are often based on counts and ranks and are very easy to integrate into an introductory course.​ The ease of computation with advanced calculators and statistical software, both of which factor into this text, allows important techniques to be introduced earlier in the study of statistics. This book's novel scope also includes measuring symmetry with Walsh averages, finding a nonparametric regression line, jackknifing, and bootstrapping​. Concepts and techniques are explored through practical problems. Quantitative reasoning is at the core of so many professions and academic disciplines, and this book opens the door to the most modern possibilities.

An Introduction To Statistical Learning

Author: Gareth James
Publisher: Springer Science & Business Media
ISBN: 1461471389
Size: 35.21 MB
Format: PDF, ePub, Mobi
View: 2941
Download and Read
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.