Download monte carlo methods and models in finance and insurance chapman and hall crc financial mathematics series in pdf or read monte carlo methods and models in finance and insurance chapman and hall crc financial mathematics series in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get monte carlo methods and models in finance and insurance chapman and hall crc financial mathematics series in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Monte Carlo Methods And Models In Finance And Insurance

Author: Ralf Korn
Publisher: CRC Press
ISBN: 9781420076196
Size: 32.54 MB
Format: PDF, ePub
View: 5804
Download and Read
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath–Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of stochastic processes with continuous and discontinuous paths. It also covers a wide selection of popular models in finance and insurance, from Black–Scholes to stochastic volatility to interest rate to dynamic mortality. Through its many numerical and graphical illustrations and simple, insightful examples, this book provides a deep understanding of the scope of Monte Carlo methods and their use in various financial situations. The intuitive presentation encourages readers to implement and further develop the simulation methods.

Monte Carlo Simulation With Applications To Finance

Author: Hui Wang
Publisher: CRC Press
ISBN: 1466566906
Size: 17.78 MB
Format: PDF, Docs
View: 5825
Download and Read
Developed from the author’s course on Monte Carlo simulation at Brown University, Monte Carlo Simulation with Applications to Finance provides a self-contained introduction to Monte Carlo methods in financial engineering. It is suitable for advanced undergraduate and graduate students taking a one-semester course or for practitioners in the financial industry. The author first presents the necessary mathematical tools for simulation, arbitrary free option pricing, and the basic implementation of Monte Carlo schemes. He then describes variance reduction techniques, including control variates, stratification, conditioning, importance sampling, and cross-entropy. The text concludes with stochastic calculus and the simulation of diffusion processes. Only requiring some familiarity with probability and statistics, the book keeps much of the mathematics at an informal level and avoids technical measure-theoretic jargon to provide a practical understanding of the basics. It includes a large number of examples as well as MATLAB® coding exercises that are designed in a progressive manner so that no prior experience with MATLAB is needed.

Financial Mathematics

Author: Giuseppe Campolieti
Publisher: CRC Press
ISBN: 1498785662
Size: 28.20 MB
Format: PDF, Mobi
View: 4110
Download and Read
Versatile for Several Interrelated Courses at the Undergraduate and Graduate Levels Financial Mathematics: A Comprehensive Treatment provides a unified, self-contained account of the main theory and application of methods behind modern-day financial mathematics. Tested and refined through years of the authors’ teaching experiences, the book encompasses a breadth of topics, from introductory to more advanced ones. Accessible to undergraduate students in mathematics, finance, actuarial science, economics, and related quantitative areas, much of the text covers essential material for core curriculum courses on financial mathematics. Some of the more advanced topics, such as formal derivative pricing theory, stochastic calculus, Monte Carlo simulation, and numerical methods, can be used in courses at the graduate level. Researchers and practitioners in quantitative finance will also benefit from the combination of analytical and numerical methods for solving various derivative pricing problems. With an abundance of examples, problems, and fully worked out solutions, the text introduces the financial theory and relevant mathematical methods in a mathematically rigorous yet engaging way. Unlike similar texts in the field, this one presents multiple problem-solving approaches, linking related comprehensive techniques for pricing different types of financial derivatives. The book provides complete coverage of both discrete- and continuous-time financial models that form the cornerstones of financial derivative pricing theory. It also presents a self-contained introduction to stochastic calculus and martingale theory, which are key fundamental elements in quantitative finance.

An Introduction To Exotic Option Pricing

Author: Peter Buchen
Publisher: CRC Press
ISBN: 1420091026
Size: 80.30 MB
Format: PDF, ePub, Docs
View: 1488
Download and Read
In an easy-to-understand, nontechnical yet mathematically elegant manner, An Introduction to Exotic Option Pricing shows how to price exotic options, including complex ones, without performing complicated integrations or formally solving partial differential equations (PDEs). The author incorporates much of his own unpublished work, including ideas and techniques new to the general quantitative finance community. The first part of the text presents the necessary financial, mathematical, and statistical background, covering both standard and specialized topics. Using no-arbitrage concepts, the Black–Scholes model, and the fundamental theorem of asset pricing, the author develops such specialized methods as the principle of static replication, the Gaussian shift theorem, and the method of images. A key feature is the application of the Gaussian shift theorem and its multivariate extension to price exotic options without needing a single integration. The second part focuses on applications to exotic option pricing, including dual-expiry, multi-asset rainbow, barrier, lookback, and Asian options. Pushing Black–Scholes option pricing to its limits, the author introduces a powerful formula for pricing a class of multi-asset, multiperiod derivatives. He gives full details of the calculations involved in pricing all of the exotic options. Taking an applied mathematics approach, this book illustrates how to use straightforward techniques to price a wide range of exotic options within the Black–Scholes framework. These methods can even be used as control variates in a Monte Carlo simulation of a stochastic volatility model.

An Introduction To Computational Risk Management Of Equity Linked Insurance

Author: Runhuan Feng
Publisher: CRC Press
ISBN: 1351647725
Size: 73.22 MB
Format: PDF, ePub
View: 1149
Download and Read
The quantitative modeling of complex systems of interacting risks is a fairly recent development in the financial and insurance industries. Over the past decades, there has been tremendous innovation and development in the actuarial field. In addition to undertaking mortality and longevity risks in traditional life and annuity products, insurers face unprecedented financial risks since the introduction of equity-linking insurance in 1960s. As the industry moves into the new territory of managing many intertwined financial and insurance risks, non-traditional problems and challenges arise, presenting great opportunities for technology development. Today's computational power and technology make it possible for the life insurance industry to develop highly sophisticated models, which were impossible just a decade ago. Nonetheless, as more industrial practices and regulations move towards dependence on stochastic models, the demand for computational power continues to grow. While the industry continues to rely heavily on hardware innovations, trying to make brute force methods faster and more palatable, we are approaching a crossroads about how to proceed. An Introduction to Computational Risk Management of Equity-Linked Insurance provides a resource for students and entry-level professionals to understand the fundamentals of industrial modeling practice, but also to give a glimpse of software methodologies for modeling and computational efficiency. Features Provides a comprehensive and self-contained introduction to quantitative risk management of equity-linked insurance with exercises and programming samples Includes a collection of mathematical formulations of risk management problems presenting opportunities and challenges to applied mathematicians Summarizes state-of-arts computational techniques for risk management professionals Bridges the gap between the latest developments in finance and actuarial literature and the practice of risk management for investment-combined life insurance Gives a comprehensive review of both Monte Carlo simulation methods and non-simulation numerical methods Runhuan Feng is an Associate Professor of Mathematics and the Director of Actuarial Science at the University of Illinois at Urbana-Champaign. He is a Fellow of the Society of Actuaries and a Chartered Enterprise Risk Analyst. He is a Helen Corley Petit Professorial Scholar and the State Farm Companies Foundation Scholar in Actuarial Science. Runhuan received a Ph.D. degree in Actuarial Science from the University of Waterloo, Canada. Prior to joining Illinois, he held a tenure-track position at the University of Wisconsin-Milwaukee, where he was named a Research Fellow. Runhuan received numerous grants and research contracts from the Actuarial Foundation and the Society of Actuaries in the past. He has published a series of papers on top-tier actuarial and applied probability journals on stochastic analytic approaches in risk theory and quantitative risk management of equity-linked insurance. Over the recent years, he has dedicated his efforts to developing computational methods for managing market innovations in areas of investment combined insurance and retirement planning.

Numerical Methods For Finance

Author: John Miller
Publisher: CRC Press
ISBN: 9781584889267
Size: 53.86 MB
Format: PDF, Docs
View: 7678
Download and Read
Featuring international contributors from both industry and academia, Numerical Methods for Finance explores new and relevant numerical methods for the solution of practical problems in finance. It is one of the few books entirely devoted to numerical methods as applied to the financial field. Presenting state-of-the-art methods in this area, the book first discusses the coherent risk measures theory and how it applies to practical risk management. It then proposes a new method for pricing high-dimensional American options, followed by a description of the negative inter-risk diversification effects between credit and market risk. After evaluating counterparty risk for interest rate payoffs, the text considers strategies and issues concerning defined contribution pension plans and participating life insurance contracts. It also develops a computationally efficient swaption pricing technology, extracts the underlying asset price distribution implied by option prices, and proposes a hybrid GARCH model as well as a new affine point process framework. In addition, the book examines performance-dependent options, variance reduction, Value at Risk (VaR), the differential evolution optimizer, and put-call-futures parity arbitrage opportunities. Sponsored by DEPFA Bank, IDA Ireland, and Pioneer Investments, this concise and well-illustrated book equips practitioners with the necessary information to make important financial decisions.

Finance With Monte Carlo

Author: Ronald W. Shonkwiler
Publisher: Springer Science & Business Media
ISBN: 1461485118
Size: 15.36 MB
Format: PDF, Docs
View: 1709
Download and Read
This text introduces upper division undergraduate/beginning graduate students in mathematics, finance, or economics, to the core topics of a beginning course in finance/financial engineering. Particular emphasis is placed on exploiting the power of the Monte Carlo method to illustrate and explore financial principles. Monte Carlo is the uniquely appropriate tool for modeling the random factors that drive financial markets and simulating their implications. The Monte Carlo method is introduced early and it is used in conjunction with the geometric Brownian motion model (GBM) to illustrate and analyze the topics covered in the remainder of the text. Placing focus on Monte Carlo methods allows for students to travel a short road from theory to practical applications. Coverage includes investment science, mean-variance portfolio theory, option pricing principles, exotic options, option trading strategies, jump diffusion and exponential Lévy alternative models, and the Kelly criterion for maximizing investment growth. Novel features: inclusion of both portfolio theory and contingent claim analysis in a single text pricing methodology for exotic options expectation analysis of option trading strategies pricing models that transcend the Black–Scholes framework optimizing investment allocations concepts thoroughly explored through numerous simulation exercises numerous worked examples and illustrations The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language. The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language. Also by the author: (with F. Mendivil) Explorations in Monte Carlo, ©2009, ISBN: 978-0-387-87836-2; (with J. Herod) Mathematical Biology: An Introduction with Maple and Matlab, Second edition, ©2009, ISBN: 978-0-387-70983-3.

High Performance Computing In Finance

Author: M. A. H. Dempster
Publisher: CRC Press
ISBN: 1315354691
Size: 37.28 MB
Format: PDF, ePub, Mobi
View: 2582
Download and Read
High-Performance Computing (HPC) delivers higher computational performance to solve problems in science, engineering and finance. There are various HPC resources available for different needs, ranging from cloud computing– that can be used without much expertise and expense – to more tailored hardware, such as Field-Programmable Gate Arrays (FPGAs) or D-Wave’s quantum computer systems. High-Performance Computing in Finance is the first book that provides a state-of-the-art introduction to HPC for finance, capturing both academically and practically relevant problems.

Operational Risk Modelling And Management

Author: Claudio Franzetti
Publisher: CRC Press
ISBN: 9781439844779
Size: 24.91 MB
Format: PDF, Mobi
View: 7692
Download and Read
Taking into account the standards of the Basel Accord, Operational Risk Modelling and Management presents a simulation model for generating the loss distribution of operational risk. It also examines a multitude of management issues that must be considered when adjusting the quantitative results of a comprehensive model. The book emphasizes techniques that can be understood and applied by practitioners. In the quantitative portions of the text, the author supplies key concepts and definitions without stating theorems or delving into mathematical proofs. He also offers references for readers looking for further background information. In addition, the book includes a Monte Carlo simulation of risk capital in the form of a run-through example of risk calculations based on data from a quantitative impact study. Since the computations are too complicated for a scripting language, a prototypical software program can be downloaded from www.garrulus.com Helping you navigate the tricky world of risk calculation and management, this book presents two main building blocks for determining how much capital needs to be reserved for operational risk. It employs the loss distribution approach as a model for calculating the risk capital figure and explains risk mitigation through management and management’s actuations.

Quantitative Equity Portfolio Management

Author: Edward E. Qian
Publisher: CRC Press
ISBN: 1420010794
Size: 12.26 MB
Format: PDF, Docs
View: 6968
Download and Read
Quantitative equity portfolio management combines theories and advanced techniques from several disciplines, including financial economics, accounting, mathematics, and operational research. While many texts are devoted to these disciplines, few deal with quantitative equity investing in a systematic and mathematical framework that is suitable for quantitative investment students. Providing a solid foundation in the subject, Quantitative Equity Portfolio Management: Modern Techniques and Applications presents a self-contained overview and a detailed mathematical treatment of various topics. From the theoretical basis of behavior finance to recently developed techniques, the authors review quantitative investment strategies and factors that are commonly used in practice, including value, momentum, and quality, accompanied by their academic origins. They present advanced techniques and applications in return forecasting models, risk management, portfolio construction, and portfolio implementation that include examples such as optimal multi-factor models, contextual and nonlinear models, factor timing techniques, portfolio turnover control, Monte Carlo valuation of firm values, and optimal trading. In many cases, the text frames related problems in mathematical terms and illustrates the mathematical concepts and solutions with numerical and empirical examples. Ideal for students in computational and quantitative finance programs, Quantitative Equity Portfolio Management serves as a guide to combat many common modeling issues and provides a rich understanding of portfolio management using mathematical analysis.