Download nonlinear and stochastic dynamics of compliant offshore structures solid mechanics and its applications in pdf or read nonlinear and stochastic dynamics of compliant offshore structures solid mechanics and its applications in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get nonlinear and stochastic dynamics of compliant offshore structures solid mechanics and its applications in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Nonlinear And Stochastic Dynamics Of Compliant Offshore Structures

Author: Seon Mi Han
Publisher: Springer Science & Business Media
ISBN: 9401599122
Size: 62.28 MB
Format: PDF, ePub, Docs
View: 4882
Download and Read
The purpose of this monograph is to show how a compliant offshore structure in an ocean environment can be modeled in two and three di mensions. The monograph is divided into five parts. Chapter 1 provides the engineering motivation for this work, that is, offshore structures. These are very complex structures used for a variety of applications. It is possible to use beam models to initially study their dynamics. Chapter 2 is a review of variational methods, and thus includes the topics: princi ple of virtual work, D'Alembert's principle, Lagrange's equation, Hamil ton's principle, and the extended Hamilton's principle. These methods are used to derive the equations of motion throughout this monograph. Chapter 3 is a review of existing transverse beam models. They are the Euler-Bernoulli, Rayleigh, shear and Timoshenko models. The equa tions of motion are derived and solved analytically using the extended Hamilton's principle, as outlined in Chapter 2. For engineering purposes, the natural frequencies of the beam models are presented graphically as functions of normalized wave number and geometrical and physical pa rameters. Beam models are useful as representations of complex struc tures. In Chapter 4, a fluid force that is representative of those that act on offshore structures is formulated. The environmental load due to ocean current and random waves is obtained using Morison's equa tion. The random waves are formulated using the Pierson-Moskowitz spectrum with the Airy linear wave theory.

Iutam Symposium On Vibration Control Of Nonlinear Mechanisms And Structures

Author: H. Ulbrich
Publisher: Springer Science & Business Media
ISBN: 1402041616
Size: 70.17 MB
Format: PDF, ePub, Mobi
View: 1742
Download and Read
During the last decades, the growth of micro-electronics has reduced the cost of computing power to a level acceptable to industry and has made possible sophisticated control strategies suitable for many applications. Vibration c- trol is applied to all kinds of engineering systems to obtain the desired dynamic behavior, improved accuracy and increased reliability during operation. In this context, one can think of applications related to the control of structures’ vib- tion isolation, control of vehicle dynamics, noise control, control of machines and mechanisms and control of ?uid-structure-interaction. One could continue with this list for a long time. Research in the ?eld of vibration control is extremely comprehensive. Pr- lems that are typical for vibration control of nonlinear mechanisms and str- tures arise in the ?elds of modeling systems in such a way that the model is suitable for control design, to choose appropriate actuator and sensor locations and to select the actuators and sensors. Theobjective of the Symposium was to present anddiscuss methodsthat contribute to thesolution of such problems and to demonstrate the state of the art inthe ?eld shown by typical examples. The intention was to evaluate the limits of performance that can beachievedby controlling the dynamics, and to point out gaps in present research and give links for areas offuture research.Mainly, it brought together leading experts from quite different areas presenting theirpoints of view.

Reanalysis Of Structures

Author: Uri Kirsch
Publisher: Springer Science & Business Media
ISBN: 9781402081989
Size: 33.34 MB
Format: PDF, Docs
View: 1321
Download and Read
This book deals with various computational procedures for multiple repeated analyses (reanalysis) of structures, and presents them in a unified approach. It meets the need for a general text covering the basic concepts and methods as well as recent developments in this area. To clarify the presentation, many illustrative examples and numerical results are demonstrated. Previous books on structural analysis do not cover most of the material presented here.

Inelastic Analysis Of Structures Under Variable Loads

Author: Dieter Weichert
Publisher: Springer Science & Business Media
ISBN: 9401094217
Size: 63.26 MB
Format: PDF, ePub
View: 3582
Download and Read
The question whether a structure or a machine component can carry the applied loads, and with which margin of safety, or whether it will become unserviceable due to collapse or excessive inelastic deformations, has always been a major concern for civil and mechanical engineers. The development of methods to answer this technologically crucial question without analysing the evolution of the system under varying loads, has a long tradition that can be traced back even to the times of emerging mechanical sciences in the early 17th century. However, the scientific foundations of the theories underlying these methods, nowadays frequently called "direct", were established sporadically in the Thirties of the 20th century and systematically and rigorously in the Fifties. Further motivations for the development of direct analysis techniques in applied mechanics of solids and structures arise from the circumstance that in many engineering situations the external actions fluctuate according to time histories not a priori known except for some essential features, e.g. variation intervals. In such situations the critical events (or "limit states") to consider, besides plastic collapse, are incremental collapse (or "ratchetting") and alternating plastic yielding, namely lack of "shakedown". Non evolutionary, direct methods for ultimate limit state analysis of structures subjected to variably-repeated external actions are the objectives of most papers collected in this book, which also contains a few contributions on related topics.

Hydrodynamics Of Offshore Structures

Author: Subrata Kumar Chakrabarti
Publisher: WIT Press
ISBN: 090545166X
Size: 73.46 MB
Format: PDF, ePub
View: 4184
Download and Read
The subject of hydrodynamics applied to offshore structures is vast. The topics covered in this book aim to help the reader understand basic principles while at the same time giving the designer enough information for particular designs. Thus, results are given with derivations, and applications are discussed with the aid of examples, with an overview of the advantages and limitations of the method involved. This makes the book suitable as a text for undergraduate and graduate students specializing in offshore and ocean engineering.

Stochastic Dynamics Of Marine Structures

Author: Arvid Naess
Publisher: Cambridge University Press
ISBN: 0521881552
Size: 74.49 MB
Format: PDF, Kindle
View: 7651
Download and Read
For students and professionals, this covers theory and methods for stochastic modelling and analysis of marine structures under environmental loads.

Mechanical Vibration

Author: Haym Benaroya
Publisher: CRC Press
ISBN: 1420080571
Size: 77.66 MB
Format: PDF, Docs
View: 6767
Download and Read
Mechanical Vibration: Analysis, Uncertainties, and Control simply and comprehensively addresses the fundamental principles of vibration theory, emphasizing its application in solving practical engineering problems. The authors focus on strengthening engineers’ command of mathematics as a cornerstone for understanding vibration, control, and the ways in which uncertainties affect analysis. It provides a detailed exploration and explanation of the essential equations involved in modeling vibrating systems and shows readers how to employ MATLAB® as an advanced tool for analyzing specific problems. Forgoing the extensive and in-depth analysis of randomness and control found in more specialized texts, this straightforward, easy-to-follow volume presents the format, content, and depth of description that the authors themselves would have found useful when they first learned the subject. The authors assume that the readers have a basic knowledge of dynamics, mechanics of materials, differential equations, and some knowledge of matrix algebra. Clarifying necessary mathematics, they present formulations and explanations to convey significant details. The material is organized to afford great flexibility regarding course level, content, and usefulness in self-study for practicing engineers or as a text for graduate engineering students. This work includes example problems and explanatory figures, biographies of renowned contributors, and access to a website providing supplementary resources. These include an online MATLAB primer featuring original programs that can be used to solve complex problems and test solutions.