Download nonlinear flow phenomena and homotopy analysis fluid flow and heat transfer in pdf or read nonlinear flow phenomena and homotopy analysis fluid flow and heat transfer in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get nonlinear flow phenomena and homotopy analysis fluid flow and heat transfer in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Nonlinear Flow Phenomena And Homotopy Analysis

Author: Kuppalapalle Vajravelu
Publisher: Springer Science & Business Media
ISBN: 364232102X
Size: 80.77 MB
Format: PDF, Mobi
View: 2711
Download and Read
Since most of the problems arising in science and engineering are nonlinear, they are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems and often fail when used for problems with strong nonlinearity. “Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer” presents the current theoretical developments of the analytical method of homotopy analysis. This book not only addresses the theoretical framework for the method, but also gives a number of examples of nonlinear problems that have been solved by means of the homotopy analysis method. The particular focus lies on fluid flow problems governed by nonlinear differential equations. This book is intended for researchers in applied mathematics, physics, mechanics and engineering. Both Kuppalapalle Vajravelu and Robert A. Van Gorder work at the University of Central Florida, USA.

Advances In The Homotopy Analysis Method

Author: Shijun Liao
Publisher: World Scientific
ISBN: 9814551260
Size: 43.48 MB
Format: PDF, ePub, Mobi
View: 1007
Download and Read
Unlike other analytic techniques, the Homotopy Analysis Method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity. This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications. Contents:Chance and Challenge: A Brief Review of Homotopy Analysis Method (S-J Liao)Predictor Homotopy Analysis Method (PHAM) (S Abbasbandy and E Shivanian)Spectral Homotopy Analysis Method for Nonlinear Boundary Value Problems (S Motsa and P Sibanda)Stability of Auxiliary Linear Operator and Convergence-Control Parameter (R A Van Gorder)A Convergence Condition of the Homotopy Analysis Method (M Turkyilmazoglu)Homotopy Analysis Method for Some Boundary Layer Flows of Nanofluids (T Hayat and M Mustafa)Homotopy Analysis Method for Fractional Swift–Hohenberg Equation (S Das and K Vishal)HAM-Based Package NOPH for Periodic Oscillations of Nonlinear Dynamic Systems (Y-P Liu)HAM-Based Mathematica Package BVPh 2.0 for Nonlinear Boundary Value Problems (Y-L Zhao and S-J Liao) Readership: Graduate students and researchers in applied mathematics, physics, nonlinear mechanics, engineering and finance. Keywords:Analytic Approxiamtion Method;Nonlinear;Homotopy;Applied MathematicsKey Features:The method described in the book can overcome almost all restrictions of other analytic approximation method for nonlinear problemsThis book is the first in homotopy analysis method, covering the newest advances, contributed by many top experts in different fields

Fluid Flow Heat And Mass Transfer At Bodies Of Different Shapes

Author: Kuppalapalle Vajravelu
Publisher: Academic Press
ISBN: 0128037857
Size: 27.95 MB
Format: PDF, Docs
View: 2050
Download and Read
Most of the equations governing the problems related to science and engineering are nonlinear in nature. As a result, they are inherently difficult to solve. Analytical solutions are available only for some special cases. For other cases, one has no easy means but to solve the problem must depend on numerical solutions. Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes: Numerical Solutions presents the current theoretical developments of boundary layer theory, a branch of transport phenomena. Also, the book addresses the theoretical developments in the area and presents a number of physical problems that have been solved by analytical or numerical method. It is focused particularly on fluid flow problems governed by nonlinear differential equations. The book is intended for researchers in applied mathematics, physics, mechanics and engineering. Addresses basic concepts to understand the theoretical framework for the method Provides examples of nonlinear problems that have been solved through the use of numerical method Focuses on fluid flow problems governed by nonlinear equations

Proceedings Of The Second International Conference On Soft Computing For Problem Solving Socpros 2012 December 28 30 2012

Author: B. V. Babu
Publisher: Springer
ISBN: 8132216024
Size: 62.49 MB
Format: PDF, ePub, Docs
View: 7155
Download and Read
The present book is based on the research papers presented in the International Conference on Soft Computing for Problem Solving (SocProS 2012), held at JK Lakshmipat University, Jaipur, India. This book provides the latest developments in the area of soft computing and covers a variety of topics, including mathematical modeling, image processing, optimization, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, data mining, etc. The objective of the book is to familiarize the reader with the latest scientific developments that are taking place in various fields and the latest sophisticated problem solving tools that are being developed to deal with the complex and intricate problems that are otherwise difficult to solve by the usual and traditional methods. The book is directed to the researchers and scientists engaged in various fields of Science and Technology.

Numerical Heat Transfer And Fluid Flow

Author: D. Srinivasacharya
Publisher: Springer
ISBN: 9811319030
Size: 67.81 MB
Format: PDF, Mobi
View: 5601
Download and Read
This book comprises selected papers from the International Conference on Numerical Heat Transfer and Fluid Flow (NHTFF 2018), and presents the latest developments in computational methods in heat and mass transfer. It also discusses numerical methods such as finite element, finite difference, and finite volume applied to fluid flow problems. Providing a good balance between computational methods and analytical results applied to a wide variety of problems in heat transfer, transport and fluid mechanics, the book is a valuable resource for students and researchers working in the field of heat transfer and fluid dynamics.

Modeling And Analysis Of Modern Fluid Problems

Author: Liancun Zheng
Publisher: Academic Press
ISBN: 0128117591
Size: 54.35 MB
Format: PDF, ePub, Docs
View: 6512
Download and Read
Modeling and Analysis of Modern Fluids helps researchers solve physical problems observed in fluid dynamics and related fields, such as heat and mass transfer, boundary layer phenomena, and numerical heat transfer. These problems are characterized by nonlinearity and large system dimensionality, and ‘exact’ solutions are impossible to provide using the conventional mixture of theoretical and analytical analysis with purely numerical methods. To solve these complex problems, this work provides a toolkit of established and novel methods drawn from the literature across nonlinear approximation theory. It covers Padé approximation theory, embedded-parameters perturbation, Adomian decomposition, homotopy analysis, modified differential transformation, fractal theory, fractional calculus, fractional differential equations, as well as classical numerical techniques for solving nonlinear partial differential equations. In addition, 3D modeling and analysis are also covered in-depth. Systematically describes powerful approximation methods to solve nonlinear equations in fluid problems Includes novel developments in fractional order differential equations with fractal theory applied to fluids Features new methods, including Homotypy Approximation, embedded-parameter perturbation, and 3D models and analysis

Hydrothermal Analysis In Engineering Using Control Volume Finite Element Method

Author: Mohsen Sheikholeslami
Publisher: Academic Press
ISBN: 0081003617
Size: 23.80 MB
Format: PDF
View: 1660
Download and Read
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems), hydro-magnetic techniques in materials and bioengineering, and convective flow in fluid-saturated porous media. The topics are of practical interest to engineering, geothermal science, and medical and biomedical sciences. Introduces a detailed explanation of Control Volume Finite Element Method (CVFEM) to provide for a complete understanding of the fundamentals Demonstrates applications of this method in various fields, such as nanofluid flow and heat transfer, MHD, FHD, and porous media Offers complete familiarity with the governing equations in which nanofluid is used as a working fluid Discusses the governing equations of MHD and FHD Provides a number of extensive examples throughout the book Bonus appendix with sample computer code

Computational Mechanics 88

Author: S.N. Atluri
Publisher: Springer Science & Business Media
ISBN: 3642613810
Size: 40.75 MB
Format: PDF, ePub, Mobi
View: 3945
Download and Read
The aim of this Conference was to become a forum for discussion of both academic and industrial research in those areas of computational engineering science and mechanics which involve and enrich the rational application of computers, numerical methods, and mechanics, in modern technology. The papers presented at this Conference cover the following topics: Solid and Structural Mechanics, Constitutive Modelling, Inelastic and Finite Deformation Response, Transient Analysis, Structural Control and Optimization, Fracture Mechanics and Structural Integrity, Computational Fluid Dynamics, Compressible and Incompressible Flow, Aerodynamics, Transport Phenomena, Heat Transfer and Solidification, Electromagnetic Field, Related Soil Mechanics and MHD, Modern Variational Methods, Biomechanics, and Off-Shore-Structural Mechanics.