Download nonlinear flow phenomena and homotopy analysis fluid flow and heat transfer in pdf or read nonlinear flow phenomena and homotopy analysis fluid flow and heat transfer in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get nonlinear flow phenomena and homotopy analysis fluid flow and heat transfer in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Nonlinear Flow Phenomena And Homotopy Analysis

Author: Kuppalapalle Vajravelu
Publisher: Springer Science & Business Media
ISBN: 364232102X
Size: 62.55 MB
Format: PDF, Kindle
View: 5583
Download and Read
Since most of the problems arising in science and engineering are nonlinear, they are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems and often fail when used for problems with strong nonlinearity. “Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer” presents the current theoretical developments of the analytical method of homotopy analysis. This book not only addresses the theoretical framework for the method, but also gives a number of examples of nonlinear problems that have been solved by means of the homotopy analysis method. The particular focus lies on fluid flow problems governed by nonlinear differential equations. This book is intended for researchers in applied mathematics, physics, mechanics and engineering. Both Kuppalapalle Vajravelu and Robert A. Van Gorder work at the University of Central Florida, USA.

Advances In The Homotopy Analysis Method

Author: Shijun Liao
Publisher: World Scientific
ISBN: 9814551260
Size: 53.71 MB
Format: PDF
View: 5618
Download and Read
Unlike other analytic techniques, the Homotopy Analysis Method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity. This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications. Contents:Chance and Challenge: A Brief Review of Homotopy Analysis Method (S-J Liao)Predictor Homotopy Analysis Method (PHAM) (S Abbasbandy and E Shivanian)Spectral Homotopy Analysis Method for Nonlinear Boundary Value Problems (S Motsa and P Sibanda)Stability of Auxiliary Linear Operator and Convergence-Control Parameter (R A Van Gorder)A Convergence Condition of the Homotopy Analysis Method (M Turkyilmazoglu)Homotopy Analysis Method for Some Boundary Layer Flows of Nanofluids (T Hayat and M Mustafa)Homotopy Analysis Method for Fractional Swift–Hohenberg Equation (S Das and K Vishal)HAM-Based Package NOPH for Periodic Oscillations of Nonlinear Dynamic Systems (Y-P Liu)HAM-Based Mathematica Package BVPh 2.0 for Nonlinear Boundary Value Problems (Y-L Zhao and S-J Liao) Readership: Graduate students and researchers in applied mathematics, physics, nonlinear mechanics, engineering and finance. Keywords:Analytic Approxiamtion Method;Nonlinear;Homotopy;Applied MathematicsKey Features:The method described in the book can overcome almost all restrictions of other analytic approximation method for nonlinear problemsThis book is the first in homotopy analysis method, covering the newest advances, contributed by many top experts in different fields

Modeling And Analysis Of Modern Fluid Problems

Author: Liancun Zheng
Publisher: Academic Press
ISBN: 0128117591
Size: 73.43 MB
Format: PDF, ePub, Docs
View: 2253
Download and Read
Modeling and Analysis of Modern Fluids helps researchers solve physical problems observed in fluid dynamics and related fields, such as heat and mass transfer, boundary layer phenomena, and numerical heat transfer. These problems are characterized by nonlinearity and large system dimensionality, and ‘exact’ solutions are impossible to provide using the conventional mixture of theoretical and analytical analysis with purely numerical methods. To solve these complex problems, this work provides a toolkit of established and novel methods drawn from the literature across nonlinear approximation theory. It covers Padé approximation theory, embedded-parameters perturbation, Adomian decomposition, homotopy analysis, modified differential transformation, fractal theory, fractional calculus, fractional differential equations, as well as classical numerical techniques for solving nonlinear partial differential equations. In addition, 3D modeling and analysis are also covered in-depth. Systematically describes powerful approximation methods to solve nonlinear equations in fluid problems Includes novel developments in fractional order differential equations with fractal theory applied to fluids Features new methods, including Homotypy Approximation, embedded-parameter perturbation, and 3D models and analysis

Fluid Flow Heat And Mass Transfer At Bodies Of Different Shapes

Author: Kuppalapalle Vajravelu
Publisher: Academic Press
ISBN: 0128037857
Size: 61.78 MB
Format: PDF, ePub
View: 2746
Download and Read
Most of the equations governing the problems related to science and engineering are nonlinear in nature. As a result, they are inherently difficult to solve. Analytical solutions are available only for some special cases. For other cases, one has no easy means but to solve the problem must depend on numerical solutions. Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes: Numerical Solutions presents the current theoretical developments of boundary layer theory, a branch of transport phenomena. Also, the book addresses the theoretical developments in the area and presents a number of physical problems that have been solved by analytical or numerical method. It is focused particularly on fluid flow problems governed by nonlinear differential equations. The book is intended for researchers in applied mathematics, physics, mechanics and engineering. Addresses basic concepts to understand the theoretical framework for the method Provides examples of nonlinear problems that have been solved through the use of numerical method Focuses on fluid flow problems governed by nonlinear equations

Nonlinear Systems In Heat Transfer

Author: Davood Domairry Ganji
Publisher: Elsevier
ISBN: 0128120207
Size: 10.66 MB
Format: PDF, ePub, Mobi
View: 2972
Download and Read
Nonlinear Heat Transfer: Mathematical Modeling and Analytical Methods addresses recent progress and original research in nonlinear science and its application in the area of heat transfer, with a particular focus on the most important advances and challenging applications. The importance of understanding analytical methods for solving linear and nonlinear constitutive equations is essential in studying engineering problems. This book provides a comprehensive range of (partial) differential equations, applied in the field of heat transfer, tackling a comprehensive range of nonlinear mathematical problems in heat radiation, heat conduction, heat convection, heat diffusion and non-Newtonian fluid systems. Providing various innovative analytical techniques and their practical application in nonlinear engineering problems is the unique point of this book. Drawing a balance between theory and practice, the different chapters of the book focus not only on the broader linear and nonlinear problems, but also applied examples of practical solutions by the outlined methodologies. Demonstrates applied mathematical techniques in the engineering applications, especially in nonlinear phenomena Exhibits a complete understanding of analytical methods and nonlinear differential equations in heat transfer Provides the tools to model and interpret applicable methods in heat transfer processes or systems to solve related complexities

Proceedings Of The Second International Conference On Soft Computing For Problem Solving Socpros 2012 December 28 30 2012

Author: B. V. Babu
Publisher: Springer
ISBN: 8132216024
Size: 33.94 MB
Format: PDF, ePub
View: 6524
Download and Read
The present book is based on the research papers presented in the International Conference on Soft Computing for Problem Solving (SocProS 2012), held at JK Lakshmipat University, Jaipur, India. This book provides the latest developments in the area of soft computing and covers a variety of topics, including mathematical modeling, image processing, optimization, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, data mining, etc. The objective of the book is to familiarize the reader with the latest scientific developments that are taking place in various fields and the latest sophisticated problem solving tools that are being developed to deal with the complex and intricate problems that are otherwise difficult to solve by the usual and traditional methods. The book is directed to the researchers and scientists engaged in various fields of Science and Technology.

Applications Of Semi Analytical Methods For Nanofluid Flow And Heat Transfer

Author: Mohsen Sheikholeslami
Publisher: Elsevier
ISBN: 0128136766
Size: 71.29 MB
Format: PDF, ePub, Docs
View: 2090
Download and Read
Application of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer applies semi-analytical methods to solve a range of engineering problems. After various methods are introduced, their application in nanofluid flow and heat transfer, magnetohydrodynamic flow, electrohydrodynamic flow and heat transfer, and nanofluid flow in porous media within several examples are explored. This is a valuable reference resource for materials scientists and engineers that will help familiarize them with a wide range of semi-analytical methods and how they are used in nanofluid flow and heat transfer. The book also includes case studies to illustrate how these methods are used in practice. Presents detailed information, giving readers a complete familiarity with governing equations where nanofluid is used as working fluid Provides the fundamentals of new analytical methods, applying them to applications of nanofluid flow and heat transfer in the presence of magnetic and electric field Gives a detailed overview of nanofluid motion in porous media

Homotopy Analysis Method In Nonlinear Differential Equations

Author: Shijun Liao
Publisher: Springer Science & Business Media
ISBN: 3642251323
Size: 58.56 MB
Format: PDF, ePub, Mobi
View: 3532
Download and Read
"Homotopy Analysis Method in Nonlinear Differential Equations" presents the latest developments and applications of the analytic approximation method for highly nonlinear problems, namely the homotopy analysis method (HAM). Unlike perturbation methods, the HAM has nothing to do with small/large physical parameters. In addition, it provides great freedom to choose the equation-type of linear sub-problems and the base functions of a solution. Above all, it provides a convenient way to guarantee the convergence of a solution. This book consists of three parts. Part I provides its basic ideas and theoretical development. Part II presents the HAM-based Mathematica package BVPh 1.0 for nonlinear boundary-value problems and its applications. Part III shows the validity of the HAM for nonlinear PDEs, such as the American put option and resonance criterion of nonlinear travelling waves. New solutions to a number of nonlinear problems are presented, illustrating the originality of the HAM. Mathematica codes are freely available online to make it easy for readers to understand and use the HAM. This book is suitable for researchers and postgraduates in applied mathematics, physics, nonlinear mechanics, finance and engineering. Dr. Shijun Liao, a distinguished professor of Shanghai Jiao Tong University, is a pioneer of the HAM.

Beyond Perturbation

Author: Shijun Liao
Publisher: CRC Press
ISBN: 1135438293
Size: 47.48 MB
Format: PDF, Docs
View: 5696
Download and Read
Solving nonlinear problems is inherently difficult, and the stronger the nonlinearity, the more intractable solutions become. Analytic approximations often break down as nonlinearity becomes strong, and even perturbation approximations are valid only for problems with weak nonlinearity. This book introduces a powerful new analytic method for nonlinear problems-homotopy analysis-that remains valid even with strong nonlinearity. In Part I, the author starts with a very simple example, then presents the basic ideas, detailed procedures, and the advantages (and limitations) of homotopy analysis. Part II illustrates the application of homotopy analysis to many interesting nonlinear problems. These range from simple bifurcations of a nonlinear boundary-value problem to the Thomas-Fermi atom model, Volterra's population model, Von Kármán swirling viscous flow, and nonlinear progressive waves in deep water. Although the homotopy analysis method has been verified in a number of prestigious journals, it has yet to be fully detailed in book form. Written by a pioneer in its development, Beyond Pertubation: Introduction to the Homotopy Analysis Method is your first opportunity to explore the details of this valuable new approach, add it to your analytic toolbox, and perhaps make contributions to some of the questions that remain open.

The Optimal Homotopy Asymptotic Method

Author: Vasile Marinca
Publisher: Springer
ISBN: 3319153749
Size: 18.93 MB
Format: PDF, Mobi
View: 2699
Download and Read
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.