Download optimal control theory for applications mechanical engineering series in pdf or read optimal control theory for applications mechanical engineering series in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get optimal control theory for applications mechanical engineering series in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Optimal Control Theory For Applications

Author: David G. Hull
Publisher: Springer Science & Business Media
ISBN: 1475741804
Size: 56.20 MB
Format: PDF, Mobi
View: 1264
Download and Read
The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.

Optimal Control In Thermal Engineering

Author: Viorel Badescu
Publisher: Springer
ISBN: 3319529684
Size: 80.15 MB
Format: PDF
View: 5913
Download and Read
This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.

Optimal Control Of Hybrid Vehicles

Author: Bram de Jager
Publisher: Springer Science & Business Media
ISBN: 1447150767
Size: 72.18 MB
Format: PDF, Kindle
View: 5472
Download and Read
Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on the maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Three case studies are included in the book: • a control strategy for a micro-hybrid power train; • experimental results obtained with a real-time strategy implemented in a hybrid electric truck; and • an analysis of the optimal component sizes for a hybrid power train. Optimal Control of Hybrid Vehicles will appeal to academic researchers and graduate students interested in hybrid vehicle control or in the applications of optimal control. Practitioners working in the design of control systems for the automotive industry will also find the ideas propounded in this book of interest.

An Engineering Approach To Optimal Control And Estimation Theory

Author: George M. Siouris
Publisher: Wiley-Interscience
ISBN:
Size: 58.30 MB
Format: PDF, Mobi
View: 7058
Download and Read
A much-awaited guide to real-world problems in modern control and estimation This combined text and reference deals with the design of modern control systems. It is the first book in this rapidly growing field to approach optimal control and optimal estimation from a strictly pragmatic standpoint. Sidestepping the realm of theoretical mathematics, An Engineering Approach to Optimal Control and Estimation Theory offers realistic and workable solutions that can be put to immediate use by electrical and mechanical engineers in aerospace and in many other applications. The author draws on his extensive experience in research and development from industry, government, and academia to present systematic, accessible coverage of all important topics, including: * All basic mathematics needed to apply subsequent information * A historical perspective on the evolution of modern control and estimation theory * All major concepts relevant to the design of modern control systems--from the Kalman filter, to linear regulators, to decentralized Kalman filters * Practical examples useful in applying the principles under discussion * Problems at the end of each chapter * Carefully selected references from the vast number of books published on this subject * Appendixes reviewing matrix algebra that is central to modern control theory, as well as matrix subroutines, useful to both students and practicing engineers Optimal Control and Estimation Theory Optimal control and optimal estimation have seen tremendous growth over the past three decades, owing to major advances in aerospace and other types of engineering. Optimal control and estimation theory is crucial to the design of modern control systems; for instance, navigation, mobile robotics, or automated vehicles and aircraft. It ensures that variables such as temperatures or pressure are kept in check, regardless of the disturbance the system undergoes. Despite the proliferation of books on the subject, most of the material published in this area is highly theoretical, and approaches the subject in a "theorem-proof" fashion, which is more appropriate to mathematics than to an engineering text. As its title suggests, An Engineering Approach to Optimal Control and Estimation Theory provides a practical and accessible guide, focusing on applications and implementation, and answering real-world questions faced by control engineers. In its highly organized overview of all areas, the book examines the design of modern optimal controllers requiring the selection of a performance criterion, demonstrates optimization of linear systems with bounded controls and limited control effort, and considers nonlinearities and their effect on various types of signals. Covering all the basics, the book deals with the evolution of optimal control and estimation theory, and presents the necessary mathematical background needed for this study. It also lists references and problems, and supplies appendixes for those wishing to delve into matrix algebra. Throughout, it offers opportunities for experimentation, while discussing analysis, various filtering methods, and many other pertinent topics. An Engineering Approach to Optimal Control and Estimation Theory is an invaluable, self-contained reference for practicing engineers, a useful text for graduate students and qualified senior undergraduates, and an important resource for anyone interested in the future of modern control technology.

Optimal Trajectory Tracking Of Nonlinear Dynamical Systems

Author: Jakob Löber
Publisher: Springer
ISBN: 3319465740
Size: 27.29 MB
Format: PDF, ePub, Docs
View: 4126
Download and Read
By establishing an alternative foundation of control theory, this thesis represents a significant advance in the theory of control systems, of interest to a broad range of scientists and engineers. While common control strategies for dynamical systems center on the system state as the object to be controlled, the approach developed here focuses on the state trajectory. The concept of precisely realizable trajectories identifies those trajectories that can be accurately achieved by applying appropriate control signals. The resulting simple expressions for the control signal lend themselves to immediate application in science and technology. The approach permits the generalization of many well-known results from the control theory of linear systems, e.g. the Kalman rank condition to nonlinear systems. The relationship between controllability, optimal control and trajectory tracking are clarified. Furthermore, the existence of linear structures underlying nonlinear optimal control is revealed, enabling the derivation of exact analytical solutions to an entire class of nonlinear optimal trajectory tracking problems. The clear and self-contained presentation focuses on a general and mathematically rigorous analysis of controlled dynamical systems. The concepts developed are visualized with the help of particular dynamical systems motivated by physics and chemistry.

Optimal Operation Of Batch Membrane Processes

Author: Radoslav Paulen
Publisher: Springer
ISBN: 3319204750
Size: 11.18 MB
Format: PDF
View: 6073
Download and Read
This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from the limiting flux model through increasingly generalized models to propose a simple numerical approach to the general case of optimal operation for batch diafiltration processes. Researchers interested in the modelling of batch processes or in the potential industrial applications of optimal control theory will find this monograph a valuable source of inspiration, instruction and ideas.

Optimal Control And Estimation

Author: Robert F. Stengel
Publisher: Courier Corporation
ISBN: 0486134814
Size: 33.89 MB
Format: PDF, Docs
View: 1902
Download and Read
Graduate-level text provides introduction to optimal control theory for stochastic systems, emphasizing application of basic concepts to real problems.

Optimal Control With Engineering Applications

Author: Hans P. Geering
Publisher: Springer Science & Business Media
ISBN: 3540694382
Size: 41.97 MB
Format: PDF, Mobi
View: 6314
Download and Read
This book introduces a variety of problem statements in classical optimal control, in optimal estimation and filtering, and in optimal control problems with non-scalar-valued performance criteria. Many example problems are solved completely in the body of the text. All chapter-end exercises are sketched in the appendix. The theoretical part of the book is based on the calculus of variations, so the exposition is very transparent and requires little mathematical rigor.

Optimale Steuerung Partieller Differentialgleichungen

Author: Fredi Tröltzsch
Publisher: Springer-Verlag
ISBN: 3322968448
Size: 58.81 MB
Format: PDF, Mobi
View: 5688
Download and Read
Die mathematische Theorie der optimalen Steuerung hat sich im Zusammenhang mit Berechnungen für die Luft- und Raumfahrt schnell zu einem wichtigen und eigenständigen Gebiet der angewandten Mathematik entwickelt. Die optimale Steuerung durch partielle Differentialgleichungen modellierter Prozesse wird eine numerische Herausforderung der Zukunft sein. Sie erfordert die Analysis nichtlinearer partieller Differentialgleichungen, Optimierung im Funktionenraum, nichtlineare Funktionalanalysis sowie Optimierungsverfahren für extrem große Aufgaben. Im Buch werden entsprechende Grundlagen mit langsam steigendem Schwierigkeitsgrad entwickelt. Grundkenntnisse zu partiellen Differentialgleichungen und der Funktionalanalysis werden jeweils dort gebracht, wo sie konkret nötig sind. Das Buch enthält viele Beispiele und eignet sich als Grundlage für Vorlesungen und Seminare.

Optimal Control Of Induction Heating Processes

Author: Edgar Rapoport
Publisher: CRC Press
ISBN: 142001949X
Size: 59.35 MB
Format: PDF
View: 6557
Download and Read
This book introduces new approaches to solving optimal control problems in induction heating process applications. Optimal Control of Induction Heating Processes demonstrates how to apply and use new optimization techniques for different types of induction heating installations. Focusing on practical methods for solving real engineering optimization problems, the text features a variety of specific optimization examples for induction heater modes and designs, particularly those used in industrial applications. The book describes basic physical phenomena in induction heating and induction heating process (IHP) optimization problems as well as IHP mathematical models for practical use. It explains the fundamentals of the new exact method and the advantages it offers over other well-known methods. A sound introduction to the broad theory of optimal control, Optimal Control of Induction Heating Processes presents a clear and accessible approach to the modern design and control of practical, cost-effective induction heating processes. This book is ideal for all students, production managers, engineers, designers, scientists, and users of induction heating machinery who would like to study, design, and improve processes of induction mass heating.