Download optimization techniques in statistics statistical modeling and decision science in pdf or read optimization techniques in statistics statistical modeling and decision science in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get optimization techniques in statistics statistical modeling and decision science in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Optimization Techniques In Statistics

Author: Jagdish S. Rustagi
Publisher: Elsevier
ISBN: 1483295710
Size: 21.57 MB
Format: PDF, Docs
View: 1952
Download and Read
Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features numerous applications, including: Finding maximum likelihood estimates Markov decision processes Programming methods used to optimize monitoring of patients in hospitals Derivation of the Neyman-Pearson lemma The search for optimal designs Simulation of a steel mill Suitable as both a reference and a text, this book will be of interest to advanced undergraduate or beginning graduate students in statistics, operations research, management and engineering sciences, and related fields. Most of the material can be covered in one semester by students with a basic background in probability and statistics. Key Features * Covers optimization from traditional methods to recent developments such as Karmarkars algorithm and simulated annealing * Develops a wide range of statistical techniques in the unified context of optimization * Discusses applications such as optimizing monitoring of patients and simulating steel mill operations * Treats numerical methods and applications Includes exercises and references for each chapter * Covers topics such as linear, nonlinear, and dynamic programming, variational methods, and stochastic optimization

Statistical Models And Methods For Financial Markets

Author: Tze Leung Lai
Publisher: Springer Science & Business Media
ISBN: 0387778276
Size: 47.52 MB
Format: PDF, ePub, Docs
View: 5425
Download and Read
The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.

Optimization And Decision Science Methodologies And Applications

Author: Antonio Sforza
Publisher: Springer
ISBN: 3319673084
Size: 31.71 MB
Format: PDF, ePub
View: 3655
Download and Read
This proceedings volume highlights the state-of-the-art knowledge related to optimization, decisions science and problem solving methods, as well as their application in industrial and territorial systems. It includes contributions tackling these themes using models and methods based on continuous and discrete optimization, network optimization, simulation and system dynamics, heuristics, metaheuristics, artificial intelligence, analytics, and also multiple-criteria decision making. The number and the increasing size of the problems arising in real life require mathematical models and solution methods adequate to their complexity. There has also been increasing research interest in Big Data and related challenges. These challenges can be recognized in many fields and systems which have a significant impact on our way of living: design, management and control of industrial production of goods and services; transportation planning and traffic management in urban and regional areas; energy production and exploitation; natural resources and environment protection; homeland security and critical infrastructure protection; development of advanced information and communication technologies. The chapters in this book examine how to deal with new and emerging practical problems arising in these different fields through the presented methodologies and their applications. The chapter topics are applicable for researchers and practitioners working in these areas, but also for the operations research community. The contributions were presented during the international conference “Optimization and Decision Science” (ODS2017), held at Hilton Sorrento Palace Conference Center, Sorrento, Italy, September 4 – 7, 2017. ODS 2017, was organized by AIRO, Italian Operations Research Society, in cooperation with DIETI (Department of Electrical Engineering and Information Technology) of University “Federico II” of Naples.

Decision Sciences

Author: Raghu Nandan Sengupta
Publisher: CRC Press
ISBN: 1482282569
Size: 80.59 MB
Format: PDF, Docs
View: 5222
Download and Read
This handbook is an endeavour to cover many current, relevant, and essential topics related to decision sciences in a scientific manner. Using this handbook, graduate students, researchers, as well as practitioners from engineering, statistics, sociology, economics, etc. will find a new and refreshing paradigm shift as to how these topics can be put to use beneficially. Starting from the basics to advanced concepts, authors hope to make the readers well aware of the different theoretical and practical ideas, which are the focus of study in decision sciences nowadays. It includes an excellent bibliography/reference/journal list, information about a variety of datasets, illustrated pseudo-codes, and discussion of future trends in research. Covering topics ranging from optimization, networks and games, multi-objective optimization, inventory theory, statistical methods, artificial neural networks, times series analysis, simulation modeling, decision support system, data envelopment analysis, queueing theory, etc., this reference book is an attempt to make this area more meaningful for varied readers. Noteworthy features of this handbook are in-depth coverage of different topics, solved practical examples, unique datasets for a variety of examples in the areas of decision sciences, in-depth analysis of problems through colored charts, 3D diagrams, and discussions about software.

Perturbations Optimization And Statistics

Author: Tamir Hazan
Publisher: MIT Press
ISBN: 0262337940
Size: 78.20 MB
Format: PDF, ePub, Docs
View: 6338
Download and Read
In nearly all machine learning, decisions must be made given current knowledge. Surprisingly, making what is believed to be the best decision is not always the best strategy, even when learning in a supervised learning setting. An emerging body of work on learning under different rules applies perturbations to decision and learning procedures. These methods provide simple and highly efficient learning rules with improved theoretical guarantees. This book describes perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees, offering readers a state-of-the-art overview. Chapters address recent modeling ideas that have arisen within the perturbations framework, including Perturb & MAP, herding, and the use of neural networks to map generic noise to distribution over highly structured data. They describe new learning procedures for perturbation models, including an improved EM algorithm and a learning algorithm that aims to match moments of model samples to moments of data. They discuss understanding the relation of perturbation models to their traditional counterparts, with one chapter showing that the perturbations viewpoint can lead to new algorithms in the traditional setting. And they consider perturbation-based regularization in neural networks, offering a more complete understanding of dropout and studying perturbations in the context of deep neural networks.

Machine Learning

Author: Sergios Theodoridis
Publisher: Academic Press
ISBN: 0128017228
Size: 67.76 MB
Format: PDF, ePub, Mobi
View: 2161
Download and Read
This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods. The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling. Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied. MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.

Strengthening Data Science Methods For Department Of Defense Personnel And Readiness Missions

Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309450780
Size: 31.79 MB
Format: PDF, ePub, Mobi
View: 2791
Download and Read
The Office of the Under Secretary of Defense (Personnel & Readiness), referred to throughout this report as P&R, is responsible for the total force management of all Department of Defense (DoD) components including the recruitment, readiness, and retention of personnel. Its work and policies are supported by a number of organizations both within DoD, including the Defense Manpower Data Center (DMDC), and externally, including the federally funded research and development centers (FFRDCs) that work for DoD. P&R must be able to answer questions for the Secretary of Defense such as how to recruit people with an aptitude for and interest in various specialties and along particular career tracks and how to assess on an ongoing basis service members’ career satisfaction and their ability to meet new challenges. P&R must also address larger-scale questions, such as how the current realignment of forces to the Asia-Pacific area and other regions will affect recruitment, readiness, and retention. While DoD makes use of large-scale data and mathematical analysis in intelligence, surveillance, reconnaissance, and elsewhereâ€"exploiting techniques such as complex network analysis, machine learning, streaming social media analysis, and anomaly detectionâ€"these skills and capabilities have not been applied as well to the personnel and readiness enterprise. Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions offers and roadmap and implementation plan for the integration of data analysis in support of decisions within the purview of P&R.

Think Like A Data Scientist

Author: Brian Godsey
Publisher: Manning Publications
ISBN: 9781633430273
Size: 78.56 MB
Format: PDF
View: 6131
Download and Read
Data science is more than just a set of tools and techniques for extracting knowledge from data sets and data streams. Data science is also a process of getting from goals and questions to real, valuable outcomes by exploring, observing, and manipulating a world of data. Traversing this world can be difficult and confusing. Software developers and non-technical folks may struggle with the uncertainty and fuzzy answers that data invariably provide, and statisticians may have trouble working with any of the multitude of relevant software tools that lie outside of their expertise. Others may not even know where to begin. Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. This book helps you fill in conceptual knowledge gaps in the daunting fields of statistics and software development, and relates those skills to the real concerns of data science in the business world. As you work though the many practical examples, you'll use your existing knowledge of statistics and programming to solve real problems in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

The R Book

Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 1118448960
Size: 55.13 MB
Format: PDF, ePub, Docs
View: 780
Download and Read
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)