Download probability statistics and stochastic processes in pdf or read probability statistics and stochastic processes in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get probability statistics and stochastic processes in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Probability Statistics And Stochastic Processes

Author: Peter Olofsson
Publisher: John Wiley & Sons
ISBN: 0470889748
Size: 64.76 MB
Format: PDF, Mobi
View: 926
Download and Read
"This book provides a unique and balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. The Second Edition features new coverage of analysis of variance (ANOVA), consistency and efficiency of estimators, asymptotic theory for maximum likelihood estimators, empirical distribution function and the Kolmogorov-Smirnov test, general linear models, multiple comparisons, Markov chain Monte Carlo (MCMC), Brownian motion, martingales, and renewal theory. Many new introductory problems and exercises have also been added. This book combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The book begins with three chapters that develop probability theory and introduce the axioms of probability, random variables, and joint distributions. The next two chapters introduce limit theorems and simulation. Also included is a chapter on statistical inference with a focus on Bayesian statistics, which is an important, though often neglected, topic for undergraduate-level texts. Markov chains in discrete and continuous time are also discussed within the book. More than 400 examples are interspersed throughout to help illustrate concepts and theory and to assist readers in developing an intuitive sense of the subject. Readers will find many of the examples to be both entertaining and thought provoking. This is also true for the carefully selected problems that appear at the end of each chapter"--

Nonparametric Statistics For Stochastic Processes

Author: D. Bosq
Publisher: Springer Science & Business Media
ISBN: 1461217180
Size: 26.87 MB
Format: PDF
View: 1798
Download and Read
This book is devoted to the theory and applications of nonparametic functional estimation and prediction. Chapter 1 provides an overview of inequalities and limit theorems for strong mixing processes. Density and regression estimation in discrete time are studied in Chapter 2 and 3. The special rates of convergence which appear in continuous time are presented in Chapters 4 and 5. This second edition is extensively revised and it contains two new chapters. Chapter 6 discusses the surprising local time density estimator. Chapter 7 gives a detailed account of implementation of nonparametric method and practical examples in economics, finance and physics. Comarison with ARMA and ARCH methods shows the efficiency of nonparametric forecasting. The prerequisite is a knowledge of classical probability theory and statistics. Denis Bosq is Professor of Statistics at the Unviersity of Paris 6 (Pierre et Marie Curie). He is Editor-in-Chief of "Statistical Inference for Stochastic Processes" and an editor of "Journal of Nonparametric Statistics". He is an elected member of the International Statistical Institute. He has published about 90 papers or works in nonparametric statistics and four books.

Introduction To Probability Statistics And Random Processes

Author: Hossein Pishro-Nik
Publisher:
ISBN: 9780990637202
Size: 32.91 MB
Format: PDF, Mobi
View: 157
Download and Read
The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.

Introduction To Probability And Stochastic Processes With Applications

Author: Liliana Blanco Castañeda
Publisher: John Wiley & Sons
ISBN: 1118344960
Size: 43.79 MB
Format: PDF
View: 663
Download and Read
An easily accessible, real-world approach to probability andstochastic processes Introduction to Probability and Stochastic Processes withApplications presents a clear, easy-to-understand treatment ofprobability and stochastic processes, providing readers with asolid foundation they can build upon throughout their careers. Withan emphasis on applications in engineering, applied sciences,business and finance, statistics, mathematics, and operationsresearch, the book features numerous real-world examples thatillustrate how random phenomena occur in nature and how to useprobabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basicconcepts of probability to advanced topics for further study,including Itô integrals, martingales, and sigma algebras.Additional topical coverage includes: Distributions of discrete and continuous random variablesfrequently used in applications Random vectors, conditional probability, expectation, andmultivariate normal distributions The laws of large numbers, limit theorems, and convergence ofsequences of random variables Stochastic processes and related applications, particularly inqueueing systems Financial mathematics, including pricing methods such asrisk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisitemathematics and tables of standard distributions for use inapplications are provided, and plentiful exercises, problems, andsolutions are found throughout. Also, a related website featuresadditional exercises with solutions and supplementary material forclassroom use. Introduction to Probability and StochasticProcesses with Applications is an ideal book for probabilitycourses at the upper-undergraduate level. The book is also avaluable reference for researchers and practitioners in the fieldsof engineering, operations research, and computer science whoconduct data analysis to make decisions in their everyday work.

Elementare Wahrscheinlichkeitstheorie Und Stochastische Prozesse

Author: Kai L. Chung
Publisher: Springer-Verlag
ISBN: 3642670334
Size: 33.20 MB
Format: PDF, Kindle
View: 4439
Download and Read
Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

Statistik Workshop F R Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Size: 38.41 MB
Format: PDF, ePub, Docs
View: 7314
Download and Read
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Stochastic Processes

Author: Sheldon M. Ross
Publisher: John Wiley & Sons Inc
ISBN:
Size: 47.39 MB
Format: PDF, Kindle
View: 469
Download and Read
A nonmeasure theoretic introduction to stochastic processes. Considers its diverse range of applications and provides readers with probabilistic intuition and insight in thinking about problems. This revised edition contains additional material on compound Poisson random variables including an identity which can be used to efficiently compute moments; a new chapter on Poisson approximations; and coverage of the mean time spent in transient states as well as examples relating to the Gibb's sampler, the Metropolis algorithm and mean cover time in star graphs. Numerous exercises and problems have been added throughout the text.

Theory Of Stochastic Objects

Author: Athanasios Christou Micheas
Publisher: CRC Press
ISBN: 1466515228
Size: 27.21 MB
Format: PDF, Mobi
View: 2600
Download and Read
This book defines and investigates the concept of a random object. To accomplish this task in a natural way, it brings together three major areas; statistical inference, measure-theoretic probability theory and stochastic processes. This point of view has not been explored by existing textbooks; one would need material on real analysis, measure and probability theory, as well as stochastic processes - in addition to at least one text on statistics- to capture the detail and depth of material that has gone into this volume. Presents and illustrates ‘random objects’ in different contexts, under a unified framework, starting with rudimentary results on random variables and random sequences, all the way up to stochastic partial differential equations. Reviews rudimentary probability and introduces statistical inference, from basic to advanced, thus making the transition from basic statistical modeling and estimation to advanced topics more natural and concrete. Compact and comprehensive presentation of the material that will be useful to a reader from the mathematics and statistical sciences, at any stage of their career, either as a graduate student, an instructor, or an academician conducting research and requiring quick references and examples to classic topics. Includes 378 exercises, with the solutions manual available on the book's website. 121 illustrative examples of the concepts presented in the text (many including multiple items in a single example). The book is targeted towards students at the master’s and Ph.D. levels, as well as, academicians in the mathematics, statistics and related disciplines. Basic knowledge of calculus and matrix algebra is required. Prior knowledge of probability or measure theory is welcomed but not necessary.

Stochastic Processes With Applications

Author: Rabi N. Bhattacharya
Publisher: SIAM
ISBN: 0898716896
Size: 42.26 MB
Format: PDF
View: 399
Download and Read
This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. The book features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walks in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. This book is for graduate students in mathematics, statistics, science and engineering, and it may also be used as a reference by professionals in diverse fields whose work involves the application of probability.