Download programming pig dataflow scripting with hadoop in pdf or read programming pig dataflow scripting with hadoop in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get programming pig dataflow scripting with hadoop in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Programming Pig

Author: Alan Gates
Publisher: "O'Reilly Media, Inc."
ISBN: 1491937068
Size: 25.83 MB
Format: PDF
View: 6511
Download and Read
For many organizations, Hadoop is the first step for dealing with massive amounts of data. The next step? Processing and analyzing datasets with the Apache Pig scripting platform. With Pig, you can batch-process data without having to create a full-fledged application, making it easy to experiment with new datasets. Updated with use cases and programming examples, this second edition is the ideal learning tool for new and experienced users alike. You’ll find comprehensive coverage on key features such as the Pig Latin scripting language and the Grunt shell. When you need to analyze terabytes of data, this book shows you how to do it efficiently with Pig. Delve into Pig’s data model, including scalar and complex data types Write Pig Latin scripts to sort, group, join, project, and filter your data Use Grunt to work with the Hadoop Distributed File System (HDFS) Build complex data processing pipelines with Pig’s macros and modularity features Embed Pig Latin in Python for iterative processing and other advanced tasks Use Pig with Apache Tez to build high-performance batch and interactive data processing applications Create your own load and store functions to handle data formats and storage mechanisms

Data Analytics With Hadoop

Author: Benjamin Bengfort
Publisher: "O'Reilly Media, Inc."
ISBN: 1491913754
Size: 16.10 MB
Format: PDF, Docs
View: 1553
Download and Read
Ready to use statistical and machine-learning techniques across large data sets? This practical guide shows you why the Hadoop ecosystem is perfect for the job. Instead of deployment, operations, or software development usually associated with distributed computing, you’ll focus on particular analyses you can build, the data warehousing techniques that Hadoop provides, and higher order data workflows this framework can produce. Data scientists and analysts will learn how to perform a wide range of techniques, from writing MapReduce and Spark applications with Python to using advanced modeling and data management with Spark MLlib, Hive, and HBase. You’ll also learn about the analytical processes and data systems available to build and empower data products that can handle—and actually require—huge amounts of data. Understand core concepts behind Hadoop and cluster computing Use design patterns and parallel analytical algorithms to create distributed data analysis jobs Learn about data management, mining, and warehousing in a distributed context using Apache Hive and HBase Use Sqoop and Apache Flume to ingest data from relational databases Program complex Hadoop and Spark applications with Apache Pig and Spark DataFrames Perform machine learning techniques such as classification, clustering, and collaborative filtering with Spark’s MLlib

Hadoop The Definitive Guide

Author: Tom White
Publisher: "O'Reilly Media, Inc."
ISBN: 1449338771
Size: 58.51 MB
Format: PDF, ePub
View: 4230
Download and Read
Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems

Microsoft Big Data Solutions

Author: Adam Jorgensen
Publisher: John Wiley & Sons
ISBN: 1118729552
Size: 78.19 MB
Format: PDF, Docs
View: 2412
Download and Read
Tap the power of Big Data with Microsoft technologies Big Data is here, and Microsoft's new Big Data platform is a valuable tool to help your company get the very most out of it. This timely book shows you how to use HDInsight along with HortonWorks Data Platform for Windows to store, manage, analyze, and share Big Data throughout the enterprise. Focusing primarily on Microsoft and HortonWorks technologies but also covering open source tools, Microsoft Big Data Solutions explains best practices, covers on-premises and cloud-based solutions, and features valuable case studies. Best of all, it helps you integrate these new solutions with technologies you already know, such as SQL Server and Hadoop. Walks you through how to integrate Big Data solutions in your company using Microsoft's HDInsight Server, HortonWorks Data Platform for Windows, and open source tools Explores both on-premises and cloud-based solutions Shows how to store, manage, analyze, and share Big Data through the enterprise Covers topics such as Microsoft's approach to Big Data, installing and configuring HortonWorks Data Platform for Windows, integrating Big Data with SQL Server, visualizing data with Microsoft and HortonWorks BI tools, and more Helps you build and execute a Big Data plan Includes contributions from the Microsoft and HortonWorks Big Data product teams If you need a detailed roadmap for designing and implementing a fully deployed Big Data solution, you'll want Microsoft Big Data Solutions.

Learning Hadoop 2

Author: Garry Turkington
Publisher: Packt Publishing Ltd
ISBN: 1783285524
Size: 67.87 MB
Format: PDF, Mobi
View: 4853
Download and Read
If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. You are expected to be familiar with the Unix/Linux command-line interface and have some experience with the Java programming language. Familiarity with Hadoop would be a plus.

Hdinsight Essentials Second Edition

Author: Rajesh Nadipalli
Publisher: Packt Publishing Ltd
ISBN: 1784396664
Size: 26.33 MB
Format: PDF, ePub
View: 386
Download and Read
If you want to discover one of the latest tools designed to produce stunning Big Data insights, this book features everything you need to get to grips with your data. Whether you are a data architect, developer, or a business strategist, HDInsight adds value in everything from development, administration, and reporting.

Big Data For Chimps

Author: Philip (flip) Kromer
Publisher: "O'Reilly Media, Inc."
ISBN: 149192392X
Size: 59.75 MB
Format: PDF
View: 1325
Download and Read
Finding patterns in massive event streams can be difficult, but learning how to find them doesn’t have to be. This unique hands-on guide shows you how to solve this and many other problems in large-scale data processing with simple, fun, and elegant tools that leverage Apache Hadoop. You’ll gain a practical, actionable view of big data by working with real data and real problems. Perfect for beginners, this book’s approach will also appeal to experienced practitioners who want to brush up on their skills. Part I explains how Hadoop and MapReduce work, while Part II covers many analytic patterns you can use to process any data. As you work through several exercises, you’ll also learn how to use Apache Pig to process data. Learn the necessary mechanics of working with Hadoop, including how data and computation move around the cluster Dive into map/reduce mechanics and build your first map/reduce job in Python Understand how to run chains of map/reduce jobs in the form of Pig scripts Use a real-world dataset—baseball performance statistics—throughout the book Work with examples of several analytic patterns, and learn when and where you might use them

Large Scale Data Analytics

Author: Aris Gkoulalas-Divanis
Publisher: Springer Science & Business Media
ISBN: 1461492424
Size: 67.34 MB
Format: PDF, Kindle
View: 3947
Download and Read
This edited book collects state-of-the-art research related to large-scale data analytics that has been accomplished over the last few years. This is among the first books devoted to this important area based on contributions from diverse scientific areas such as databases, data mining, supercomputing, hardware architecture, data visualization, statistics, and privacy. There is increasing need for new approaches and technologies that can analyze and synthesize very large amounts of data, in the order of petabytes, that are generated by massively distributed data sources. This requires new distributed architectures for data analysis. Additionally, the heterogeneity of such sources imposes significant challenges for the efficient analysis of the data under numerous constraints, including consistent data integration, data homogenization and scaling, privacy and security preservation. The authors also broaden reader understanding of emerging real-world applications in domains such as customer behavior modeling, graph mining, telecommunications, cyber-security, and social network analysis, all of which impose extra requirements for large-scale data analysis. Large-Scale Data Analytics is organized in 8 chapters, each providing a survey of an important direction of large-scale data analytics or individual results of the emerging research in the field. The book presents key recent research that will help shape the future of large-scale data analytics, leading the way to the design of new approaches and technologies that can analyze and synthesize very large amounts of heterogeneous data. Students, researchers, professionals and practitioners will find this book an authoritative and comprehensive resource.