Download quantum mechanics for electrical engineers ieee press series on microelectronic systems in pdf or read quantum mechanics for electrical engineers ieee press series on microelectronic systems in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get quantum mechanics for electrical engineers ieee press series on microelectronic systems in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Quantum Mechanics For Electrical Engineers

Author: Dennis M. Sullivan
Publisher: John Wiley & Sons
ISBN: 0470874090
Size: 74.76 MB
Format: PDF
View: 4125
Download and Read
The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at the heart of most electrical engineering theory. In this manner, the explanation of the quantum mechanics is rooted in the mathematics familiar to every electrical engineer. Secondly, beginning with the first chapter, simple computer programs in MATLAB are used to illustrate the principles. The programs can easily be copied and used by the reader to do the exercises at the end of the chapters or to just become more familiar with the material. Many of the figures in this book have a title across the top. This title is the name of the MATLAB program that was used to generate that figure. These programs are available to the reader. Appendix D lists all the programs, and they are also downloadable at http://booksupport.wiley.com

Nand Flash Memory Technologies

Author: Seiichi Aritome
Publisher: John Wiley & Sons
ISBN: 1119132622
Size: 20.68 MB
Format: PDF, ePub, Mobi
View: 4824
Download and Read
Offers a comprehensive overview of NAND flash memories, with insights into NAND history, technology, challenges, evolutions, and perspectives Describes new program disturb issues, data retention, power consumption, and possible solutions for the challenges of 3D NAND flash memory Written by an authority in NAND flash memory technology, with over 25 years’ experience

Understanding Delta Sigma Data Converters

Author: Shanthi Pavan
Publisher: John Wiley & Sons
ISBN: 1119258286
Size: 38.48 MB
Format: PDF, Docs
View: 1833
Download and Read
This new edition introduces operation and design techniques for Sigma-Delta converters in physical and conceptual terms, and includes chapters which explore developments in the field over the last decade Includes information on MASH architectures, digital-to-analog converter (DAC) mismatch and mismatch shaping Investigates new topics including continuous-time ΔΣ analog-to-digital converters (ADCs) principles and designs, circuit design for both continuous-time and discrete-time ΔΣ ADCs, decimation and interpolation filters, and incremental ADCs Provides emphasis on practical design issues for industry professionals

Ultra Low Power Bioelectronics

Author: Rahul Sarpeshkar
Publisher: Cambridge University Press
ISBN: 1139485237
Size: 67.63 MB
Format: PDF, Mobi
View: 4337
Download and Read
This book provides, for the first time, a broad and deep treatment of the fields of both ultra low power electronics and bioelectronics. It discusses fundamental principles and circuits for ultra low power electronic design and their applications in biomedical systems. It also discusses how ultra energy efficient cellular and neural systems in biology can inspire revolutionary low power architectures in mixed-signal and RF electronics. The book presents a unique, unifying view of ultra low power analog and digital electronics and emphasizes the use of the ultra energy efficient subthreshold regime of transistor operation in both. Chapters on batteries, energy harvesting, and the future of energy provide an understanding of fundamental relationships between energy use and energy generation at small scales and at large scales. A wealth of insights and examples from brain implants, cochlear implants, bio-molecular sensing, cardiac devices, and bio-inspired systems make the book useful and engaging for students and practicing engineers.

Electrical Electronics And Digital Hardware Essentials For Scientists And Engineers

Author: Ed Lipiansky
Publisher: John Wiley & Sons
ISBN: 1118414543
Size: 42.97 MB
Format: PDF
View: 774
Download and Read
A practical guide for solving real-world circuit board problems Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers arms engineers with the tools they need to test, evaluate, and solve circuit board problems. It explores a wide range of circuit analysis topics, supplementing the material with detailed circuit examples and extensive illustrations. The pros and cons of various methods of analysis, fundamental applications of electronic hardware, and issues in logic design are also thoroughly examined. The author draws on more than twenty-five years of experience in Silicon Valley to present a plethora of troubleshooting techniques readers can use in real-life situations. Plus, he devotes an entire chapter to the design of a small CPU, including all critical elements—the complete machine instruction set, from its execution path to logic implementation and timing analysis, along with power decoupling, resets, and clock considerations. Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers covers: Resistors, inductors, and capacitors as well as a variety of analytical methods The elements of magnetism—an often overlooked topic in similar books Time domain and frequency analyses of circuit behavior Numerous electronics, from operational amplifiers to MOSFET transistors Both basic and advanced logic design principles and techniques This remarkable, highly practical book is a must-have resource for solid state circuit engineers, semiconductor designers and engineers, electric circuit testing engineers, and anyone dealing with everyday circuit analysis problems. A solutions manual is available to instructors. Please email [email protected] to request the solutions manual. An errata sheet is available.

Essential Quantum Mechanics For Electrical Engineers

Author: Peter De?k
Publisher: John Wiley & Sons
ISBN: 3527413553
Size: 44.20 MB
Format: PDF, ePub
View: 2118
Download and Read
Authored by a lecturer of quantum mechanics for students of electrical engineering and informatics for over 25 years, this textbook is scientifically sound and well-written, striking a balance between the formal mathematics necessary and informal prose. The introduction summarizes the basic concepts of classical physics and points out some of its failures, based on phenomena connected to lighting technology. These are analyzed in detail in the subsequent three chapters. Chapter 5 goes beyond the duality principle, and explains the particle concept of quantum mechanics and its consequences for electrical engineering, while chapters 6-8 introduce the mathematical construction used for describing the state of a particle and to predict its properties. The next two chapters present two examples of using this framework, with applications in light emitting diodes, infrared detectors, quantum cascade lasers, Zener diodes and flash memories. The final chapters then discuss some consequences of quantum mechanics for the chemical properties of atoms and for other many-electron systems, also providing a short insight into the potential hardware for quantum information processing. Among the host of didactic features are learning objectives, chapter summaries, self-testing questions, and problems with solutions, while the two appendices summarize the knowledge in classical physics and mathematics needed for this book.

Quantum Mechanics For Scientists And Engineers

Author: David A. B. Miller
Publisher: Cambridge University Press
ISBN: 1139471279
Size: 11.56 MB
Format: PDF, ePub, Mobi
View: 2274
Download and Read
If you need a book that relates the core principles of quantum mechanics to modern applications in engineering, physics, and nanotechnology, this is it. Students will appreciate the book's applied emphasis, which illustrates theoretical concepts with examples of nanostructured materials, optics, and semiconductor devices. The many worked examples and more than 160 homework problems help students to problem solve and to practise applications of theory. Without assuming a prior knowledge of high-level physics or classical mechanics, the text introduces Schrödinger's equation, operators, and approximation methods. Systems, including the hydrogen atom and crystalline materials, are analyzed in detail. More advanced subjects, such as density matrices, quantum optics, and quantum information, are also covered. Practical applications and algorithms for the computational analysis of simple structures make this an ideal introduction to quantum mechanics for students of engineering, physics, nanotechnology, and other disciplines. Additional resources available from www.cambridge.org/9780521897839.

Advanced Nanoelectronics

Author: Razali Ismail
Publisher: CRC Press
ISBN: 1439856818
Size: 75.97 MB
Format: PDF, ePub
View: 1622
Download and Read
While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.

Quantum Mechanics For Electrical Engineers

Author: I. D. Mayergoyz
Publisher: World Scientific Publishing Company
ISBN: 9789813148017
Size: 60.74 MB
Format: PDF, Docs
View: 1802
Download and Read
The book is designed for a one-semester graduate course in quantum mechanics for electrical engineers. It can also be used for teaching quantum mechanics to graduate students in materials science and engineering departments as well as to applied physicists. The selection of topics in the book is based on their relevance to engineering applications. The book provides the theoretical foundation for graduate courses in quantum optics and lasers, semiconductor electronics, applied superconductivity and quantum computing. It covers (along with traditional subjects) the following topics: resonant and Josephson tunneling; Landau levels and their relation to the integer quantum Hall effect; effective mass Schrodinger equation and semi-classical transport; quantum transitions in two-level systems; Berry phase and Berry curvature; density matrix and optical Bloch equation for two-level systems; Wigner function and quantum transport; exchange interaction and spintronic.

Electronic Materials And Devices

Author: David K. Ferry
Publisher: Academic Press
ISBN: 9780122541612
Size: 77.68 MB
Format: PDF, Mobi
View: 3107
Download and Read
This book provides the knowledge and understanding necessary to comprehend the operation of individual electronic devices that are found in modern micro-electronics. As a textbook, it is aimed at the third-year undergraduate curriculum in electrical engineering, in which the physical electronic properties are used to develop an introductory understanding to the semiconductor devices used in modern micro-electronics. The emphasis of the book is on providing detailed physical insight into the microscopic mechanisms that form the cornerstone for these technologies. Mathematical treatments are therefore kept to the minimum level necessary to achieve suitable rigor. * Covers crystalline structure * Thorough introduction to the key principles of quantum mechanics * Semiconductor statistics, impurities, and controlled doping * Detailed analysis of the operation of semiconductor devices, including p-n junctions, field-effect transistors, metal-semiconductor junctions and bipolar junction transistors * Discussion of optoelectronic devices such as light-emitting diodes (LEDs) and lasers * Chapters on the device applications of dielectrics, magnetic materials, and superconductors