## Random Walk A Modern Introduction

Author: Gregory F. Lawler
Publisher: Cambridge University Press
ISBN: 1139488767
Size: 17.71 MB
Format: PDF
View: 2385

Random walks are stochastic processes formed by successive summation of independent, identically distributed random variables and are one of the most studied topics in probability theory. This contemporary introduction evolved from courses taught at Cornell University and the University of Chicago by the first author, who is one of the most highly regarded researchers in the field of stochastic processes. This text meets the need for a modern reference to the detailed properties of an important class of random walks on the integer lattice. It is suitable for probabilists, mathematicians working in related fields, and for researchers in other disciplines who use random walks in modeling.

## Random Walk And The Heat Equation

Author: Gregory F. Lawler
Publisher: American Mathematical Soc.
ISBN: 0821848291
Size: 42.90 MB
Format: PDF, Kindle
View: 3900

The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.

## Non Homogeneous Random Walks

Author: Mikhail Menshikov
Publisher: Cambridge University Press
ISBN: 1316867366
Size: 21.93 MB
Format: PDF, ePub, Mobi
View: 5055

Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.

## Riemannian Geometry

Author: Isaac Chavel
Publisher: Cambridge University Press
ISBN: 1139452576
Size: 72.71 MB
Format: PDF, ePub
View: 6100

This book provides an introduction to Riemannian geometry, the geometry of curved spaces, for use in a graduate course. Requiring only an understanding of differentiable manifolds, the author covers the introductory ideas of Riemannian geometry followed by a selection of more specialized topics. Also featured are Notes and Exercises for each chapter, to develop and enrich the reader's appreciation of the subject. This second edition, first published in 2006, has a clearer treatment of many topics than the first edition, with new proofs of some theorems and a new chapter on the Riemannian geometry of surfaces. The main themes here are the effect of the curvature on the usual notions of classical Euclidean geometry, and the new notions and ideas motivated by curvature itself. Completely new themes created by curvature include the classical Rauch comparison theorem and its consequences in geometry and topology, and the interaction of microscopic behavior of the geometry with the macroscopic structure of the space.

## An Introduction To Random Matrices

Author: Greg W. Anderson
Publisher: Cambridge University Press
ISBN: 0521194520
Size: 77.43 MB
Format: PDF, ePub, Docs
View: 7662

A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.

## Intersection Local Times Loop Soups And Permanental Wick Powers

Author: Yves Le Jan
Publisher: American Mathematical Soc.
ISBN: 1470436957
Size: 80.62 MB
Format: PDF
View: 3735

Several stochastic processes related to transient Lévy processes with potential densities , that need not be symmetric nor bounded on the diagonal, are defined and studied. They are real valued processes on a space of measures endowed with a metric . Sufficient conditions are obtained for the continuity of these processes on . The processes include -fold self-intersection local times of transient Lévy processes and permanental chaoses, which are `loop soup -fold self-intersection local times' constructed from the loop soup of the Lévy process. Loop soups are also used to define permanental Wick powers, which generalizes standard Wick powers, a class of -th order Gaussian chaoses. Dynkin type isomorphism theorems are obtained that relate the various processes. Poisson chaos processes are defined and permanental Wick powers are shown to have a Poisson chaos decomposition. Additional properties of Poisson chaos processes are studied and a martingale extension is obtained for many of the processes described above.

## Algorithms And Computation

Author: Khaled Elbassioni
Publisher: Springer
ISBN: 3662489716
Size: 22.90 MB
Format: PDF, ePub
View: 1143

This book constitutes the refereed proceedings of the 26th International Symposium on Algorithms and Computation, ISAAC 2015, held in Nagoya, Japan, in December 2015. The 65 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 180 submissions for inclusion in the book. The focus of the volume is on the following topics: computational geometry; data structures; combinatorial optimization and approximation algorithms; randomized algorithms; graph algorithms and FPT; computational complexity; graph drawing and planar graphs; online and streaming algorithms; and string and DNA algorithms.

## Probability And Statistical Physics In St Petersburg

Author: V. Sidoravicius
Publisher: American Mathematical Soc.
ISBN: 1470422484
Size: 77.91 MB
Format: PDF, Kindle
View: 3620

This book brings a reader to the cutting edge of several important directions of the contemporary probability theory, which in many cases are strongly motivated by problems in statistical physics. The authors of these articles are leading experts in the field and the reader will get an exceptional panorama of the field from the point of view of scientists who played, and continue to play, a pivotal role in the development of the new methods and ideas, interlinking it with geometry, complex analysis, conformal field theory, etc., making modern probability one of the most vibrant areas in mathematics.

## Elements Of The Random Walk

Author: Joseph Rudnick
Publisher: Cambridge University Press
ISBN: 9781139450140
Size: 65.24 MB
Format: PDF, ePub, Docs
View: 4163

Random walks have proven to be a useful model in understanding processes across a wide spectrum of scientific disciplines. Elements of the Random Walk is an introduction to some of the most powerful and general techniques used in the application of these ideas. The mathematical construct that runs through the analysis of the topics covered in this book, unifying the mathematical treatment, is the generating function. Although the reader is introduced to analytical tools, such as path-integrals and field-theoretical formalism, the book is self-contained in that basic concepts are developed and relevant fundamental findings fully discussed. Mathematical background is provided in supplements at the end of each chapter, when appropriate. This text will appeal to graduate students across science, engineering and mathematics who need to understand the applications of random walk techniques, as well as to established researchers.

## Brownian Motion

Author: T. Hida
Publisher: Springer Science & Business Media
ISBN: 1461260302
Size: 69.68 MB
Format: PDF, ePub
View: 4511

Following the publication of the Japanese edition of this book, several inter esting developments took place in the area. The author wanted to describe some of these, as well as to offer suggestions concerning future problems which he hoped would stimulate readers working in this field. For these reasons, Chapter 8 was added. Apart from the additional chapter and a few minor changes made by the author, this translation closely follows the text of the original Japanese edition. We would like to thank Professor J. L. Doob for his helpful comments on the English edition. T. Hida T. P. Speed v Preface The physical phenomenon described by Robert Brown was the complex and erratic motion of grains of pollen suspended in a liquid. In the many years which have passed since this description, Brownian motion has become an object of study in pure as well as applied mathematics. Even now many of its important properties are being discovered, and doubtless new and useful aspects remain to be discovered. We are getting a more and more intimate understanding of Brownian motion.