Download regression analysis and linear models concepts applications and implementation methodology in the social sciences in pdf or read regression analysis and linear models concepts applications and implementation methodology in the social sciences in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get regression analysis and linear models concepts applications and implementation methodology in the social sciences in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Regression Analysis And Linear Models

Author: Richard B. Darlington
Publisher: Guilford Publications
ISBN: 1462521134
Size: 16.79 MB
Format: PDF
View: 715
Download and Read
Ephasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable?s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.

Introduction To Mediation Moderation And Conditional Process Analysis Second Edition

Author: Andrew F. Hayes
Publisher: Guilford Publications
ISBN: 146253466X
Size: 59.12 MB
Format: PDF, Mobi
View: 3940
Download and Read
Lauded for its easy-to-understand, conversational discussion of the fundamentals of mediation, moderation, and conditional process analysis, this book has been fully revised with 50% new content, including sections on working with multicategorical antecedent variables, the use of PROCESS version 3 for SPSS and SAS for model estimation, and annotated PROCESS v3 outputs. Using the principles of ordinary least squares regression, Andrew F. Hayes carefully explains procedures for testing hypotheses about the conditions under and the mechanisms by which causal effects operate, as well as the moderation of such mechanisms. Hayes shows how to estimate and interpret direct, indirect, and conditional effects; probe and visualize interactions; test questions about moderated mediation; and report different types of analyses. Data for all the examples are available on the companion website (www.afhayes.com), along with links to download PROCESS. New to This Edition *Chapters on using each type of analysis with multicategorical antecedent variables. *Example analyses using PROCESS v3, with annotated outputs throughout the book. *More tips and advice, including new or revised discussions of formally testing moderation of a mechanism using the index of moderated mediation; effect size in mediation analysis; comparing conditional effects in models with more than one moderator; using R code for visualizing interactions; distinguishing between testing interaction and probing it; and more. *Rewritten Appendix A, which provides the only documentation of PROCESS v3, including 13 new preprogrammed models that combine moderation with serial mediation or parallel and serial mediation. *Appendix B, describing how to create customized models in PROCESS v3 or edit preprogrammed models.

Regression Basics

Author: Leo H. Kahane
Publisher: SAGE Publications
ISBN: 1483317102
Size: 13.68 MB
Format: PDF, Docs
View: 5873
Download and Read
Using a friendly, nontechnical approach, the Second Edition of Regression Basics introduces readers to the fundamentals of regression. Accessible to anyone with an introductory statistics background, this book builds from a simple two-variable model to a model of greater complexity. Author Leo H. Kahane weaves four engaging examples throughout the text to illustrate not only the techniques of regression but also how this empirical tool can be applied in creative ways to consider a broad array of topics. New to the Second Edition • Offers greater coverage of simple panel-data estimation: Because the availability of panel data has increased over the past decade, this new edition includes coverage of estimation with multiple cross-sections of data across time. • Provides an introductory discussion of omitted variables bias: As a problem that frequently arises, this issue is important for those new to regression analysis to understand. • Includes up-to-date advances: Chapter 7 is expanded to include recent developments in regression. • Uses a diverse selection of examples: Engaging examples illustrate the wide application of regression analysis from baseball salaries to presidential voting to British crime rates to U.S. abortion rates and more. • Includes more end-of-chapter problems: This edition offers new questions at the end of chapters that are based on the new examples woven through the book. • Illustrates examples using software programs: Appendix B now includes screenshots to further aid readers working with Microsoft Excel® and SPSS. Intended Audience This is an ideal core or supplemental text for advanced undergraduate and graduate courses such as Regression and Correlation, Sociological Research Methods, Quantitative Research Methods, and Statistical Methods in the fields of economics, public policy, political science, sociology, public affairs, urban planning, education, and geography.

Multiple Regression

Author: Leona S. Aiken
Publisher: SAGE
ISBN: 9780761907121
Size: 79.25 MB
Format: PDF, ePub
View: 6042
Download and Read
This successful book, now available in paperback, provides academics and researchers with a clear set of prescriptions for estimating, testing and probing interactions in regression models. Including the latest research in the area, such as Fuller's work on the corrected/constrained estimator, the book is appropriate for anyone who uses multiple regression to estimate models, or for those enrolled in courses on multivariate statistics.

Introduction To Statistical Mediation Analysis

Author: David MacKinnon
Publisher: Routledge
ISBN: 1136676139
Size: 79.31 MB
Format: PDF, Kindle
View: 7776
Download and Read
This volume introduces the statistical, methodological, and conceptual aspects of mediation analysis. Applications from health, social, and developmental psychology, sociology, communication, exercise science, and epidemiology are emphasized throughout. Single-mediator, multilevel, and longitudinal models are reviewed. The author's goal is to help the reader apply mediation analysis to their own data and understand its limitations. Each chapter features an overview, numerous worked examples, a summary, and exercises (with answers to the odd numbered questions). The accompanying CD contains outputs described in the book from SAS, SPSS, LISREL, EQS, MPLUS, and CALIS, and a program to simulate the model. The notation used is consistent with existing literature on mediation in psychology. The book opens with a review of the types of research questions the mediation model addresses. Part II describes the estimation of mediation effects including assumptions, statistical tests, and the construction of confidence limits. Advanced models including mediation in path analysis, longitudinal models, multilevel data, categorical variables, and mediation in the context of moderation are then described. The book closes with a discussion of the limits of mediation analysis, additional approaches to identifying mediating variables, and future directions. Introduction to Statistical Mediation Analysis is intended for researchers and advanced students in health, social, clinical, and developmental psychology as well as communication, public health, nursing, epidemiology, and sociology. Some exposure to a graduate level research methods or statistics course is assumed. The overview of mediation analysis and the guidelines for conducting a mediation analysis will be appreciated by all readers.

Multilevel Modeling

Author: Douglas A. Luke
Publisher: SAGE
ISBN: 9780761928799
Size: 47.69 MB
Format: PDF, Mobi
View: 336
Download and Read
A practical introduction to multi-level modelling, this book offers an introduction to HLM & illustrations of how to use this technique to build models for hierarchical & longitudinal data.

Semiparametric Regression For The Social Sciences

Author: Luke John Keele
Publisher: John Wiley & Sons
ISBN: 9780470998120
Size: 60.78 MB
Format: PDF, ePub
View: 7163
Download and Read
An introductory guide to smoothing techniques, semiparametric estimators, and their related methods, this book describes the methodology via a selection of carefully explained examples and data sets. It also demonstrates the potential of these techniques using detailed empirical examples drawn from the social and political sciences. Each chapter includes exercises and examples and there is a supplementary website containing all the datasets used, as well as computer code, allowing readers to replicate every analysis reported in the book. Includes software for implementing the methods in S-Plus and R.

Diagnostic Measurement

Author: Andr? A. Rupp
Publisher: Guilford Press
ISBN: 1606235281
Size: 63.31 MB
Format: PDF, ePub
View: 4633
Download and Read
This book provides a comprehensive introduction to the theory and practice of diagnostic classification models (DCMs), which are useful for statistically driven diagnostic decision making. DCMs can be employed in a wide range of disciplines, including educational assessment and clinical psychology. For the first time in a single volume, the authors present the key conceptual underpinnings and methodological foundations for applying these models in practice. Specifically, they discuss a unified approach to DCMs, the mathematical structure of DCMs and their relationship to other latent variable models, and the implementation and estimation of DCMs using Mplus. The book's highly accessible language, real-world applications, numerous examples, and clearly annotated equations will encourage professionals and students to explore the utility and statistical properties of DCMs in their own projects. This book will appeal to professionals in the testing industry; professors and students in educational, school, clinical, and cognitive psychology. It will also serve as a useful text in doctoral-level courses in diagnostic testing, cognitive diagnostic assessment, test validity, diagnostic assessment, advanced educational measurement, psychometrics, and item response theory

Theory Based Data Analysis For The Social Sciences

Author: Carol S. Aneshensel
Publisher: SAGE
ISBN: 1412994357
Size: 66.84 MB
Format: PDF
View: 7390
Download and Read
This book presents a method for bringing data analysis and statistical technique into line with theory. The author begins by describing the elaboration model for analyzing the empirical association between variables. She then introduces a new concept into this model, the focal relationship. Building upon the focal relationship as the cornerstone for all subsequent analysis, two analytic strategies are developed to establish its internal validity: an exclusionary strategy to eliminate alternative explanations, and an inclusive strategy which looks at the interconnected set of relationships predicted by theory. Using real examples of social research, the author demonstrates the use of this approach for two common forms of analysis, multiple linear regression and logistic regression. Whether learning data analysis for the first time or adding new techniques to your repertoire, this book provides an excellent basis for theory-based data analysis.