Download science teachers use of visual representations models and modeling in science education in pdf or read science teachers use of visual representations models and modeling in science education in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get science teachers use of visual representations models and modeling in science education in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Science Teachers Use Of Visual Representations

Author: Billie Eilam
Publisher: Springer
ISBN: 3319065262
Size: 10.42 MB
Format: PDF, ePub, Mobi
View: 4000
Download and Read
This book examines the diverse use of visual representations by teachers in the science classroom. It contains unique pedagogies related to the use of visualization, presents original curriculum materials as well as explores future possibilities. The book begins by looking at the significance of visual representations in the teaching of science. It then goes on to detail two recent innovations in the field: simulations and slowmation, a process of explicit visualization. It also evaluates the way teachers have used different diagrams to illustrate concepts in biology and chemistry. Next, the book explores the use of visual representations in culturally diverse classrooms, including the implication of culture for teachers’ use of representations, the crucial importance of language in the design and use of visualizations and visualizations in popular books about chemistry. It also shows the place of visualizations in the growing use of informal, self-directed science education. Overall, the book concludes that if the potential of visualizations in science education is to be realized in the future, the subject must be included in both pre-service and in-service teacher education. It explores ways to develop science teachers’ representational competence and details the impact that this will have on their teaching. The worldwide trend towards providing science education for all, coupled with the increased availability of color printing, access to personal computers and projection facilities, has lead to a more extensive and diverse use of visual representations in the classroom. This book offers unique insights into the relationship between visual representations and science education, making it an ideal resource for educators as well as researchers in science education, visualization and pedagogy.

Visualization Theory And Practice In Science Education

Author: John K. Gilbert
Publisher: Springer Science & Business Media
ISBN: 9781402052675
Size: 20.77 MB
Format: PDF, ePub, Mobi
View: 2181
Download and Read
External representations (pictures, diagrams, graphs, concrete models) have always been valuable tools for the science teacher. This book brings together the insights of practicing scientists, science education researchers, computer specialists, and cognitive scientists, to produce a coherent overview. It links presentations about cognitive theory, its implications for science curriculum design, and for learning and teaching in classrooms and laboratories.

Constructing Representations To Learn In Science

Author: Russell Tytler
Publisher: Springer Science & Business Media
ISBN: 9462092036
Size: 10.47 MB
Format: PDF, ePub, Mobi
View: 1773
Download and Read
Constructing Representations to Learn in Science Current research into student learning in science has shifted attention from the traditional cognitivist perspectives of conceptual change to socio-cultural and semiotic perspectives that characterize learning in terms of induction into disciplinary literacy practices. This book builds on recent interest in the role of representations in learning to argue for a pedagogical practice based on students actively generating and exploring representations. The book describes a sustained inquiry in which the authors worked with primary and secondary teachers of science, on key topics identified as problematic in the research literature. Data from classroom video, teacher interviews and student artifacts were used to develop and validate a set of pedagogical principles and explore student learning and teacher change issues. The authors argue the theoretical and practical case for a representational focus. The pedagogical approach is illustrated and explored in terms of the role of representation to support quality student learning in science. Separate chapters address the implications of this perspective and practice for structuring sequences around different concepts, reasoning and inquiry in science, models and model based reasoning, the nature of concepts and learning, teacher change, and assessment. The authors argue that this representational focus leads to significantly enhanced student learning, and has the effect of offering new and productive perspectives and approaches for a number of contemporary strands of thinking in science education including conceptual change, inquiry, scientific literacy, and a focus on the epistemic nature of science.

Visualization In Science Education

Author: John K. Gilbert
Publisher: Springer Science & Business Media
ISBN: 1402036132
Size: 49.76 MB
Format: PDF, Docs
View: 3734
Download and Read
This book addresses key issues concerning visualization in the teaching and learning of science at any level in educational systems. It is the first book specifically on visualization in science education. The book draws on the insights from cognitive psychology, science, and education, by experts from five countries. It unites these with the practice of science education, particularly the ever-increasing use of computer-managed modelling packages.

Modelling Based Teaching In Science Education

Author: John K. Gilbert
Publisher: Springer
ISBN: 3319290398
Size: 27.15 MB
Format: PDF, ePub
View: 5627
Download and Read
This book argues that modelling should be a component of all school curricula that aspire to provide ‘authentic science education for all’. The literature on modelling is reviewed and a ‘model of modelling’ is proposed. The conditions for the successful implementation of the ‘model of modelling’ in classrooms are explored and illustrated from practical experience. The roles of argumentation, visualisation, and analogical reasoning, in successful modelling-based teaching are reviewed. The contribution of such teaching to both the learning of key scientific concepts and an understanding of the nature of science are established. Approaches to the design of curricula that facilitate the progressive grasp of the knowledge and skills entailed in modelling are outlined. Recognising that the approach will both represent a substantial change from the ‘content-transmission’ approach to science teaching and be in accordance with current best-practice in science education, the design of suitable approaches to teacher education are discussed. Finally, the challenges that modelling-based education pose to science education researchers, advanced students of science education and curriculum design, teacher educators, public examiners, and textbook designers, are all outlined.

Visual Data And Their Use In Science Education

Author: Jon Pedersen
Publisher: IAP
ISBN: 1623962064
Size: 46.52 MB
Format: PDF, ePub
View: 4892
Download and Read
Visual Data in Science Education builds upon previous work done by the editors to bring some definition to the meaning of visual data as it relates to education, and highlighted the breadth of types and uses of visual data across the major academic disciplines. In this book, the editors have brought this focus specifically to science education through the contributions of colleagues in the field who actively research about and engage in teaching with visual data. The book begins by examining how the brain functions with respect to processing visual data, then explores models of conceptual frameworks, which then leads into how related ideas are actuated in education settings ranging from elementary science classrooms to college environments. As a whole, this book fosters a more coherent image of the multifaceted process of science teaching and learning that is informed by current understandings of science knowledge construction, the scientific enterprise, and the millennium student as they relate to visual data.

Multiple Representations In Physics Education

Author: David F. Treagust
Publisher: Springer
ISBN: 3319589148
Size: 44.43 MB
Format: PDF, Mobi
View: 2449
Download and Read
This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in different levels of the education system and in different physics topics using analogies and models, different modes, and in reasoning and representational competence. When multiple representations are used in physics for teaching, the expectation is that they should be successful. To ensure this is the case, the implementation of representations should consider design principles for using multiple representations. Investigations regarding their effect on classroom communication as well as on the learning results in all levels of schooling and for different topics of physics are reported. The book is intended for physics educators and their students at universities and for physics teachers in schools to apply multiple representations in physics in a productive way.

Multiple Representations In Chemical Education

Author: John K. Gilbert
Publisher: Springer Science & Business Media
ISBN: 1402088728
Size: 53.67 MB
Format: PDF, Mobi
View: 2871
Download and Read
Chemistry seeks to provide qualitative and quantitative explanations for the observed behaviour of elements and their compounds. Doing so involves making use of three types of representation: the macro (the empirical properties of substances); the sub-micro (the natures of the entities giving rise to those properties); and the symbolic (the number of entities involved in any changes that take place). Although understanding this triplet relationship is a key aspect of chemical education, there is considerable evidence that students find great difficulty in achieving mastery of the ideas involved. In bringing together the work of leading chemistry educators who are researching the triplet relationship at the secondary and university levels, the book discusses the learning involved, the problems that students encounter, and successful approaches to teaching. Based on the reported research, the editors argue for a coherent model for understanding the triplet relationship in chemical education.

Multiple Representations In Biological Education

Author: David Franklin Treagust
Publisher: Springer Science & Business Media
ISBN: 9400741928
Size: 37.98 MB
Format: PDF
View: 1570
Download and Read
This new publication in the Models and Modeling in Science Education series synthesizes a wealth of international research on using multiple representations in biology education and aims for a coherent framework in using them to improve higher-order learning. Addressing a major gap in the literature, the volume proposes a theoretical model for advancing biology educators’ notions of how multiple external representations (MERs) such as analogies, metaphors and visualizations can best be harnessed for improving teaching and learning in biology at all pedagogical levels. The content tackles the conceptual and linguistic difficulties of learning biology at each level—macro, micro, sub-micro, and symbolic, illustrating how MERs can be used in teaching across these levels and in various combinations, as well as in differing contexts and topic areas. The strategies outlined will help students’ reasoning and problem-solving skills, enhance their ability to construct mental models and internal representations, and, ultimately, will assist in increasing public understanding of biology-related issues, a key goal in today’s world of pressing concerns over societal problems about food, environment, energy, and health. The book concludes by highlighting important aspects of research in biological education in the post-genomic, information age.