Download sensitivity analysis for neural networks natural computing series in pdf or read sensitivity analysis for neural networks natural computing series in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get sensitivity analysis for neural networks natural computing series in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Sensitivity Analysis For Neural Networks

Author: Daniel S. Yeung
Publisher: Springer Science & Business Media
ISBN: 9783642025327
Size: 60.41 MB
Format: PDF
View: 4147
Download and Read
Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks.

Artificial Neural Networks In Medicine And Biology

Author: H. Malmgren
Publisher: Springer Science & Business Media
ISBN: 1447105133
Size: 32.83 MB
Format: PDF, Mobi
View: 1026
Download and Read
This book contains the proceedings of the conference ANNIMAB-l, held 13-16 May 2000 in Goteborg, Sweden. The conference was organized by the Society for Artificial Neural Networks in Medicine and Biology (ANNIMAB-S), which was established to promote research within a new and genuinely cross-disciplinary field. Forty-two contributions were accepted for presentation; in addition to these, S invited papers are also included. Research within medicine and biology has often been characterised by application of statistical methods for evaluating domain specific data. The growing interest in Artificial Neural Networks has not only introduced new methods for data analysis, but also opened up for development of new models of biological and ecological systems. The ANNIMAB-l conference is focusing on some of the many uses of artificial neural networks with relevance for medicine and biology, specifically: • Medical applications of artificial neural networks: for better diagnoses and outcome predictions from clinical and laboratory data, in the processing of ECG and EEG signals, in medical image analysis, etc. More than half of the contributions address such clinically oriented issues. • Uses of ANNs in biology outside clinical medicine: for example, in models of ecology and evolution, for data analysis in molecular biology, and (of course) in models of animal and human nervous systems and their capabilities. • Theoretical aspects: recent developments in learning algorithms, ANNs in relation to expert systems and to traditional statistical procedures, hybrid systems and integrative approaches.

From Natural To Artificial Neural Computation

Author: Jose Mira
Publisher: Springer Science & Business Media
ISBN: 9783540594970
Size: 41.84 MB
Format: PDF, ePub
View: 6559
Download and Read
This volume presents the proceedings of the International Workshop on Artificial Neural Networks, IWANN '95, held in Torremolinos near Malaga, Spain in June 1995. The book contains 143 revised papers selected from a wealth of submissions and five invited contributions; it covers all current aspects of neural computation and presents the state of the art of ANN research and applications. The papers are organized in sections on neuroscience, computational models of neurons and neural nets, organization principles, learning, cognitive science and AI, neurosimulators, implementation, neural networks for perception, and neural networks for communication and control.

Computational Intelligence

Author: Russell C. Eberhart
Publisher: Elsevier
ISBN: 0080553834
Size: 22.36 MB
Format: PDF, Kindle
View: 7662
Download and Read
Computational Intelligence: Concepts to Implementations provides the most complete and practical coverage of computational intelligence tools and techniques to date. This book integrates various natural and engineering disciplines to establish Computational Intelligence. This is the first comprehensive textbook on the subject, supported with lots of practical examples. It asserts that computational intelligence rests on a foundation of evolutionary computation. This refreshing view has set the book apart from other books on computational intelligence. This book lays emphasis on practical applications and computational tools, which are very useful and important for further development of the computational intelligence field. Focusing on evolutionary computation, neural networks, and fuzzy logic, the authors have constructed an approach to thinking about and working with computational intelligence that has, in their extensive experience, proved highly effective. The book moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific con. It explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation. It details the metrics and analytical tools needed to assess the performance of computational intelligence tools. The book concludes with a series of case studies that illustrate a wide range of successful applications. This book will appeal to professional and academic researchers in computational intelligence applications, tool development, and systems. Moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific concepts and paradigms that inform the authors' methodologies Explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation Details the metrics and analytical tools needed to assess the performance of computational intelligence tools Concludes with a series of case studies that illustrate a wide range of successful applications Presents code examples in C and C++ Provides, at the end of each chapter, review questions and exercises suitable for graduate students, as well as researchers and practitioners engaged in self-study

Neural Networks For Applied Sciences And Engineering

Author: Sandhya Samarasinghe
Publisher: CRC Press
ISBN: 9781420013061
Size: 12.65 MB
Format: PDF, Mobi
View: 5822
Download and Read
In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in scientific data analysis, this book provides a solid foundation of basic neural network concepts. It contains an overview of neural network architectures for practical data analysis followed by extensive step-by-step coverage on linear networks, as well as, multi-layer perceptron for nonlinear prediction and classification explaining all stages of processing and model development illustrated through practical examples and case studies. Later chapters present an extensive coverage on Self Organizing Maps for nonlinear data clustering, recurrent networks for linear nonlinear time series forecasting, and other network types suitable for scientific data analysis. With an easy to understand format using extensive graphical illustrations and multidisciplinary scientific context, this book fills the gap in the market for neural networks for multi-dimensional scientific data, and relates neural networks to statistics. Features § Explains neural networks in a multi-disciplinary context § Uses extensive graphical illustrations to explain complex mathematical concepts for quick and easy understanding ? Examines in-depth neural networks for linear and nonlinear prediction, classification, clustering and forecasting § Illustrates all stages of model development and interpretation of results, including data preprocessing, data dimensionality reduction, input selection, model development and validation, model uncertainty assessment, sensitivity analyses on inputs, errors and model parameters Sandhya Samarasinghe obtained her MSc in Mechanical Engineering from Lumumba University in Russia and an MS and PhD in Engineering from Virginia Tech, USA. Her neural networks research focuses on theoretical understanding and advancements as well as practical implementations.

Sensitivity Analysis In Earth Observation Modelling

Author: George Petropoulos
Publisher: Elsevier
ISBN: 0128030313
Size: 78.75 MB
Format: PDF, Docs
View: 2612
Download and Read
Sensitivity Analysis in Earth Observation Modeling highlights the state-of-the-art in ongoing research investigations and new applications of sensitivity analysis in earth observation modeling. In this framework, original works concerned with the development or exploitation of diverse methods applied to different types of earth observation data or earth observation-based modeling approaches are included. An overview of sensitivity analysis methods and principles is provided first, followed by examples of applications and case studies of different sensitivity/uncertainty analysis implementation methods, covering the full spectrum of sensitivity analysis techniques, including operational products. Finally, the book outlines challenges and future prospects for implementation in earth observation modeling. Information provided in this book is of practical value to readers looking to understand the principles of sensitivity analysis in earth observation modeling, the level of scientific maturity in the field, and where the main limitations or challenges are in terms of improving our ability to implement such approaches in a wide range of applications. Readers will also be informed on the implementation of sensitivity/uncertainty analysis on operational products available at present, on global and continental scales. All of this information is vital in the selection process of the most appropriate sensitivity analysis method to implement. Outlines challenges and future prospects of sensitivity analysis implementation in earth observation modeling Provides readers with a roadmap for directing future efforts Includes case studies with applications from different regions around the globe, helping readers to explore strengths and weaknesses of the different methods in earth observation modeling Presents a step-by-step guide, providing the principles of each method followed by the application of variants, making the reference easy to use and follow

Adaptive And Natural Computing Algorithms

Author: Mikko Kolehmainen
Publisher: Springer Science & Business Media
ISBN: 3642049206
Size: 14.68 MB
Format: PDF, ePub, Mobi
View: 4755
Download and Read
This book constitutes the thoroughly refereed post-proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2009, held in Kuopio, Finland, in April 2009. The 63 revised full papers presented were carefully reviewed and selected from a total of 112 submissions. The papers are organized in topical sections on neutral networks, evolutionary computation, learning, soft computing, bioinformatics as well as applications.

Artificial Neural Networks In Biological And Environmental Analysis

Author: Grady Hanrahan
Publisher: CRC Press
ISBN: 9781439812594
Size: 22.47 MB
Format: PDF
View: 6768
Download and Read
Originating from models of biological neural systems, artificial neural networks (ANN) are the cornerstones of artificial intelligence research. Catalyzed by the upsurge in computational power and availability, and made widely accessible with the co-evolution of software, algorithms, and methodologies, artificial neural networks have had a profound impact in the elucidation of complex biological, chemical, and environmental processes. Artificial Neural Networks in Biological and Environmental Analysis provides an in-depth and timely perspective on the fundamental, technological, and applied aspects of computational neural networks. Presenting the basic principles of neural networks together with applications in the field, the book stimulates communication and partnership among scientists in fields as diverse as biology, chemistry, mathematics, medicine, and environmental science. This interdisciplinary discourse is essential not only for the success of independent and collaborative research and teaching programs, but also for the continued interest in the use of neural network tools in scientific inquiry. The book covers: A brief history of computational neural network models in relation to brain function Neural network operations, including neuron connectivity and layer arrangement Basic building blocks of model design, selection, and application from a statistical perspective Neurofuzzy systems, neuro-genetic systems, and neuro-fuzzy-genetic systems Function of neural networks in the study of complex natural processes Scientists deal with very complicated systems, much of the inner workings of which are frequently unknown to researchers. Using only simple, linear mathematical methods, information that is needed to truly understand natural systems may be lost. The development of new algorithms to model such processes is needed, and ANNs can play a major role. Balancing basic principles and diverse applications, this text introduces newcomers to the field and reviews recent developments of interest to active neural network practitioners.

Second Order Methods For Neural Networks

Author: Adrian J. Shepherd
Publisher: Springer Science & Business Media
ISBN: 1447109538
Size: 31.78 MB
Format: PDF, ePub, Mobi
View: 4301
Download and Read
About This Book This book is about training methods - in particular, fast second-order training methods - for multi-layer perceptrons (MLPs). MLPs (also known as feed-forward neural networks) are the most widely-used class of neural network. Over the past decade MLPs have achieved increasing popularity among scientists, engineers and other professionals as tools for tackling a wide variety of information processing tasks. In common with all neural networks, MLPsare trained (rather than programmed) to carryout the chosen information processing function. Unfortunately, the (traditional' method for trainingMLPs- the well-knownbackpropagation method - is notoriously slow and unreliable when applied to many prac tical tasks. The development of fast and reliable training algorithms for MLPsis one of the most important areas ofresearch within the entire field of neural computing. The main purpose of this book is to bring to a wider audience a range of alternative methods for training MLPs, methods which have proved orders of magnitude faster than backpropagation when applied to many training tasks. The book also addresses the well-known (local minima' problem, and explains ways in which fast training methods can be com bined with strategies for avoiding (or escaping from) local minima. All the methods described in this book have a strong theoretical foundation, drawing on such diverse mathematical fields as classical optimisation theory, homotopic theory and stochastic approximation theory.