Download shear deformable beams and plates relationships with classical solutions in pdf or read shear deformable beams and plates relationships with classical solutions in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get shear deformable beams and plates relationships with classical solutions in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Shear Deformable Beams And Plates

Author: C.M. Wang
Publisher: Elsevier
ISBN: 9780080541150
Size: 45.96 MB
Format: PDF, ePub
View: 3064
Download and Read
Most books on the theory and analysis of beams and plates deal with the classical (Euler-Bernoulli/Kirchoff) theories but few include shear deformation theories in detail. The classical beam/plate theory is not adequate in providing accurate bending, buckling, and vibration results when the thickness-to-length ratio of the beam/plate is relatively large. This is because the effect of transverse shear strains, neglected in the classical theory, becomes significant in deep beams and thick plates. This book illustrates how shear deformation theories provide accurate solutions compared to the classical theory. Equations governing shear deformation theories are typically more complicated than those of the classical theory. Hence it is desirable to have exact relationships between solutions of the classical theory and shear deformation theories so that whenever classical theory solutions are available, the corresponding solutions of shear deformation theories can be readily obtained. Such relationships not only furnish benchmark solutions of shear deformation theories but also provide insight into the significance of shear deformation on the response. The relationships for beams and plates have been developed by many authors over the last several years. The goal of this monograph is to bring together these relationships for beams and plates in a single volume. The book is divided into two parts. Following the introduction, Part 1 consists of Chapters 2 to 5 dealing with beams, and Part 2 consists of Chapters 6 to 13 covering plates. Problems are included at the end of each chapter to use, extend, and develop new relationships.

Advances In The Mechanics Of Plates And Shells

Author: D. Durban
Publisher: Springer Science & Business Media
ISBN: 0306469545
Size: 57.56 MB
Format: PDF, Docs
View: 2558
Download and Read
The optimal control of flexible structures is an active area of research. The main body of work in this area is concerned with the control of time-dependent displacements and stresses, and assumes linear elastic conditions, namely linear elastic material behavior and small defor- tion. See, e. g. , [1]–[3], the collections of papers [4, 5], and references therein. On the other hand, in the present paper we consider the static optimal control of a structure made of a nonlinear elastic material and und- going large deformation. An important application is the suppression of static or quasi-static elastic deformation in flexible space structures such as parts of satellites by the use of control loads [6]. Solar rad- tion and radiation from other sources induce a temperature field in the structure, which in turn generates an elastic displacement field. The displacements must usually satisfy certain limitations dictated by the allowed working conditions of various orientation-sensitive instruments and antennas in the space vehicle. For example, a parabolic reflector may cease to be effective when undergoing large deflection. The elastic deformation can be reduced by use of control loads, which may be imp- mented via mechanically-based actuators or more modern piezoelectric devices. When the structure under consideration is made of a rubb- like material and is undergoing large deformation, nonlinear material and geometric effects must be taken into account in the analysis.

Meshfree Methods For Partial Differential Equations Iii

Author: Michael Griebel
Publisher: Springer Science & Business Media
ISBN: 3540462228
Size: 25.50 MB
Format: PDF, Docs
View: 6124
Download and Read
Meshfree methods for the numerical solution of partial differential equations are becoming more and more mainstream in many areas of applications. This volume represents the state-of-the-art in meshfree methods. It consists of articles which address the different meshfree techniques, their mathematical properties and their application in applied mathematics, physics and engineering.

Structural Vibration

Author: C.Y. Wang
Publisher: CRC Press
ISBN: 1466576855
Size: 27.44 MB
Format: PDF, Kindle
View: 7053
Download and Read
Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates offers an introduction to structural vibration and highlights the importance of the natural frequencies in design. It focuses on free vibrations for analysis and design of structures and machine and presents the exact vibration solutions for strings, membranes, beams, and plates. This book emphasizes the exact solutions for free transverse vibration of strings, membranes, beams, and plates. It explains the intrinsic, fundamental, and unexpected features of the solutions in terms of known functions as well as solutions determined from exact characteristic equations. The book provides: A single-volume resource for exact solutions of vibration problems in strings, membranes, beams, and plates A reference for checking vibration frequency values and mode shapes of structural problems Governing equations and boundary conditions for vibration of structural elements Analogies of vibration problems Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates provides practicing engineers, academics, and researchers with a reference for data on a specific structural member as well as a benchmark standard for numerical or approximate analytical methods.

Analysis And Design Of Plated Structures

Author: N E Shanmugam
Publisher: Elsevier
ISBN: 1845692292
Size: 51.41 MB
Format: PDF, Kindle
View: 5808
Download and Read
Plated structures are widely used in many engineering constructions ranging from aircraft to ships and from off-shore structures to bridges and buildings. Given their diverse use in severe dynamic loading environments, it is vital that their dynamic behaviour is analysed and understood. Analysis and design of plated structures Volume 2: Dynamics provides a concise review of the most recent research in the area and how it can be applied in the field. The book discusses the modelling of plates for effects such as transverse shear deformation and rotary inertia, assembly of plates in forming thin-walled members, and changing material properties in composite, laminated and functionally graded plates. Various recent techniques for linear and nonlinear vibration analysis are also presented and discussed. The book concludes with a hybrid strategy suitable for parameter identification of plated structures and hydroelastic analysis of floating plated structures. With its distinguished editors and team of international contributors, Analysis and design of plated structures Volume 2: Dynamics is an invaluable reference source for engineers, researchers and academics involved in the analysis and design of plated structures. It also provides a companion volume to Analysis and design of plated structures Volume 1: Stability. The second of two volumes on plated structures Provides a concise review of the most recent research in the research of plated structures Discusses modelling of plates for specific effects