Download single neuron computation neural networks foundations to applications in pdf or read single neuron computation neural networks foundations to applications in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get single neuron computation neural networks foundations to applications in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Single Neuron Computation

Author: Thomas M. McKenna
Publisher: Academic Press
ISBN: 1483296067
Size: 44.21 MB
Format: PDF, ePub, Mobi
View: 425
Download and Read
This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real neurons is essential to the design of enhanced processor elements for use in the next generation of ANNs. The book covers computation in dendrites and spines, computational aspects of ion channels, synapses, patterned discharge and multistate neurons, and stochastic models of neuron dynamics. It is the most up-to-date presentation of biophysical and computational methods.

Advances In Swarm Intelligence

Author: Ying Tan
Publisher: Springer Science & Business Media
ISBN: 3642134971
Size: 10.65 MB
Format: PDF, ePub
View: 150
Download and Read
The LNCS series reports state-of-the-art results in computer science research, development, and education, at a high level and in both printed and electronic form. Enjoying tight cooperation with the R&D community, with numerous individuals, as well as with prestigious organizations and societies, LNCS has grown into the most comprehensive computer science research forum available. The scope of LNCS, including its subseries LNAI and LNBI, spans the whole range of computer science and information technology including interdisciplinary topics in a variety of application fields. In parallel to the printed book, each new volume is published electronically in LNCS Online.

Temporal Coding In The Brain

Author: G. Buzsaki
Publisher: Springer Science & Business Media
ISBN: 3642851487
Size: 44.14 MB
Format: PDF, ePub, Docs
View: 2824
Download and Read
Temporal coding in the brain documents a revolution now occurring in the neurosciences. How does parallel processing of information bind together the complex nature of the outer and our inner worlds? Do intrinsic oscillations and transient cooperative states of neurons represent the physiological basis of cognitive and motor functions of the brain? Some answers to these challenging issues are provided in this book by leading world experts of brain function. A common denominator of the works presented in this volume is the nature and mechanisms of neuronal cooperation in the temporal domain. The topics range from simple organisms to the human brain. The volume is intended for investigators and graduate students in neurophysiology, cognitive neuroscience, neural computation and neurology.

Neural Network Design 2nd Edition

Author: Martin Hagan
Publisher:
ISBN: 9780971732117
Size: 61.82 MB
Format: PDF, Docs
View: 1673
Download and Read
This book provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems.

Energy Minimization Methods In Computer Vision And Pattern Recognition

Author: Marcello Pelillo
Publisher: Springer Science & Business Media
ISBN: 9783540629092
Size: 10.21 MB
Format: PDF, Docs
View: 934
Download and Read
This book constitutes the refereed proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR'97, held in Venice, Italy, in May 1997. The book presents 29 revised full papers selected from a total of 62 submissions. Also included are four full invited papers and a keynote paper by leading researchers. The volume is organized in sections on contours and deformable models, Markov random fields, deterministic methods, object recognition, evolutionary search, structural models, and applications. The volume is the first comprehensive documentation of the application of energy minimization techniques in the areas of compiler vision and pattern recognition.

Biophysics Of Computation

Author: Christof Koch
Publisher: Oxford University Press
ISBN: 0195181999
Size: 50.10 MB
Format: PDF, Kindle
View: 7368
Download and Read
Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

An Introduction To Neural Networks

Author: Kevin Gurney
Publisher: CRC Press
ISBN: 1482286998
Size: 67.26 MB
Format: PDF, Kindle
View: 4454
Download and Read
Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Theoretical Mechanics Of Biological Neural Networks

Author: Ronald J. MacGregor
Publisher: Elsevier
ISBN: 0080924417
Size: 36.38 MB
Format: PDF
View: 3300
Download and Read
Theoretical Mechanics of Biological Neural Networks presents an extensive and coherent discusson and formulation of the generation and integration of neuroelectric signals in single neurons. The approach relates computer simulation programs for neurons of arbitrary complexity to fundamental gating processes of transmembrance ionic fluxes of synapses of excitable membranes. Listings of representative computer programs simulating arbitrary neurons, and local and composite neural networks are included. Develops a theory of dynamic similarity for characterising the firing rate sensitivites of neurons in terms of their characteristic anatomical and physiological parameters Presents the sequential configuration theory - a theoretical presentation of coordinated firing patterns in entire neural population Presents the outlines of mechanics for multiple interacting networks in composite systems

Tree Structure Based Hybrid Computational Intelligence

Author: Yuehui Chen
Publisher: Springer Science & Business Media
ISBN: 3642047394
Size: 58.32 MB
Format: PDF
View: 320
Download and Read
Research in computational intelligence is directed toward building thinking machines and improving our understanding of intelligence. As evident, the ultimate achievement in this field would be to mimic or exceed human cognitive capabilities including reasoning, recognition, creativity, emotions, understanding, learning and so on. In this book, the authors illustrate an hybrid computational intelligence framework and it applications for various problem solving tasks. Based on tree-structure based encoding and the specific function operators, the models can be flexibly constructed and evolved by using simple computational intelligence techniques. The main idea behind this model is the flexible neural tree, which is very adaptive, accurate and efficient. Based on the pre-defined instruction/operator sets, a flexible neural tree model can be created and evolved. This volume comprises of 6 chapters including an introductory chapter giving the fundamental definitions and the last Chapter provides some important research challenges. Academics, scientists as well as engineers engaged in research, development and application of computational intelligence techniques and data mining will find the comprehensive coverage of this book invaluable.

Neural Networks With R

Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788399412
Size: 11.54 MB
Format: PDF
View: 278
Download and Read
Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.