Download solar hydrogen generation transition metal oxides in water photoelectrolysis in pdf or read solar hydrogen generation transition metal oxides in water photoelectrolysis in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get solar hydrogen generation transition metal oxides in water photoelectrolysis in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Solar Hydrogen Generation Transition Metal Oxides In Water Photoelectrolysis

Author: Jinghua Guo
Publisher: McGraw Hill Professional
ISBN: 0071701273
Size: 65.62 MB
Format: PDF, ePub, Docs
View: 1397
Download and Read
State-of-the-art renewable energy science research and applications Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis provides expert techniques for extracting hydrogen from water using transition metal oxides as catalysts. The basic processes of electrochemistry and photocatalysis for hydrogen production are described along with photocatalytic reactions and semiconductor photocatalysts, particularly metal oxides. This in-depth guide illustrates the corresponding crystal structure vs. electronic structure and optical properties vs. light absorption of transition metal oxides. Impurity and doped photocatalysts, integrated organic and inorganic systems, surface and interface chemistry, and nanostructure and morphology in photocatalysis applications are all addressed. This comprehensive resource introduces soft x-ray absorption (XAS), soft x-ray emission spectroscopy (XES), and resonant inelastic soft x-ray scattering (RIXS), followed by a description of instrumentation. COVERAGE INCLUDES: * Hydrogen generation: electrochemistry and photoelectrolysis * Photocatalytic reactions, oxidation, and reduction * Transition metal oxides * Crystal structure and electronic structure * Optical properties and light absorption * Impurity, dopants, and defects * Surface and morphology * Soft x-ray spectroscopy and electronic structure

Environmental Photochemistry

Author: Detlef W. Bahnemann
Publisher: Springer
ISBN: 366246795X
Size: 13.31 MB
Format: PDF, ePub
View: 3819
Download and Read
This volume builds on the previous two editions, Environmental Photochemistry Part I and Part II, which reflect the diverse range of activities in this highly dynamic research field. The chapters cover fundamental topics, from photocatalyst materials, surface-modified materials, reaction kinetics and reactor modelling, to translational research activities on chemical synthesis, energy conversion and water treatment. The applications of the new generation of LED irradiation sources and spectroscopic methods for elucidating reaction pathways are also covered in detail. This new volume maintains the ethos of the previous editions by further contributing to readers’ understanding of photochemical and photocatalytic processes for environmental applications.

Photoelectrochemical Hydrogen Production

Author: Roel van de Krol
Publisher: Springer Science & Business Media
ISBN: 9781461413806
Size: 77.21 MB
Format: PDF, ePub, Mobi
View: 5120
Download and Read
Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.

Handbook Of Hydrogen Energy

Author: S.A. Sherif
Publisher: CRC Press
ISBN: 1420054503
Size: 79.28 MB
Format: PDF, Kindle
View: 6191
Download and Read
Can hydrogen and electricity supply all of the world’s energy needs? Handbook of Hydrogen Energy thoroughly explores the notion of a hydrogen economy and addresses this question. The handbook considers hydrogen and electricity as a permanent energy system and provides factual information based on science. The text focuses on a large cross section of applications such as fuel cells and catalytic combustion of hydrogen. The book also includes information on inversion curves, physical and thermodynamic tables, and properties of storage materials, data on specific heats, and compressibility and temperature–entropy charts and more. Analyzes the principles of hydrogen energy production, storage, and utilization Examines electrolysis, thermolysis, photolysis, thermochemical cycles, and production from biomass and other hydrogen production methods Covers all modes of hydrogen storage: gaseous, liquid, slush, and metal hydride storage Handbook of Hydrogen Energy serves as a resource for graduate students, as well as a reference for energy and environmental engineers and scientists.

Inorganic Metal Oxide Nanocrystal Photocatalysts For Solar Fuel Generation From Water

Author: Troy K. Townsend
Publisher: Springer Science & Business Media
ISBN: 331905242X
Size: 56.11 MB
Format: PDF
View: 6458
Download and Read
Troy Townsend's thesis explores the structure, energetics and activity of three inorganic nanocrystal photocatalysts. The goal of this work is to investigate the potential of metal oxide nanocrystals for application in photocatalytic water splitting, which could one day provide us with clean hydrogen fuel derived from water and solar energy. Specifically, Townsend's work addresses the effects of co-catalyst addition to niobium oxide nanotubes for photocatalytic water reduction to hydrogen, and the first use of iron oxide 'rust' in nanocrystal suspensions for oxygen production. In addition, Townsend studies a nickel/oxide-strontium titanate nanocomposite which can be described as one of only four nanoscale water splitting photocatalysts. He also examines the charge transport for this system. Overall, this collection of studies brings relevance to the design of inorganic nanomaterials for photocatalytic water splitting while introducing new directions for solar energy conversion.

Solar Hydrogen Generation

Author: Krishnan Rajeshwar
Publisher: Springer Science & Business Media
ISBN: 0387728104
Size: 12.35 MB
Format: PDF, ePub, Docs
View: 1939
Download and Read
Given the backdrop of intense interest and widespread discussion on the prospects of a hydrogen energy economy, this book aims to provide an authoritative and up-to-date scientific account of hydrogen generation using solar energy and renewable sources such as water. While the technological and economic aspects of solar hydrogen generation are evolving, the scientific principles underlying various solar-assisted water splitting schemes already have a firm footing. This book aims to expose a broad-based audience to these principles. This book spans the disciplines of solar energy conversion, electrochemistry, photochemistry, photoelectrochemistry, materials chemistry, device physics/engineering, and biology.

Light Water Hydrogen

Author: CRAIG GRIMES
Publisher: Springer Science & Business Media
ISBN: 9780387682389
Size: 56.50 MB
Format: PDF, Docs
View: 4582
Download and Read
This book covers the field of solar production of hydrogen by water photo-splitting (photoelectrolysis) using semiconductor photoanodes. The emphasis of the discussion is on the use of nanotechnology in the field. The theories behind photocatalysis and photoelectrochemical processes responsible for hydrogen production are given in detail. This provides a state-of-the-art review of the semiconductor materials and methods used for improving the efficiency of the processes. The book also gives an account of the techniques used for making the nanostructures.

Semiconductor Alloys

Author: An-Ben Chen
Publisher: Springer Science & Business Media
ISBN: 1461303176
Size: 67.73 MB
Format: PDF, Kindle
View: 5881
Download and Read
In the first comprehensive treatment of these technologically important materials, the authors provide theories linking the properties of semiconductor alloys to their constituent compounds. Topics include crystal structures, bonding, elastic properties, phase diagrams, band structures, transport, ab-initio theories, and semi-empirical theories. Each chapter includes extensive tables and figures as well as problem sets.

Photoelectrochemical Water Splitting

Author: Zhebo Chen
Publisher: Springer Science & Business Media
ISBN: 1461482984
Size: 62.34 MB
Format: PDF, ePub, Mobi
View: 6157
Download and Read
This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) – for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a “how-to” guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to develop materials which can absorb the energy from sunlight to drive electrochemical hydrogen production from the splitting of water. The substantial complexity in the scientific understanding and experimental protocols needed to sufficiently pursue accurate and reliable materials development means that a large need exists to consolidate and standardize the most common methods utilized by researchers in this field.