Download statistical simulation power method polynomials and other transformations in pdf or read statistical simulation power method polynomials and other transformations in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get statistical simulation power method polynomials and other transformations in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Statistical Simulation

Author: Todd C. Headrick
Publisher: CRC Press
ISBN: 9781420064919
Size: 57.97 MB
Format: PDF, ePub, Docs
View: 1186
Download and Read
Although power method polynomials based on the standard normal distributions have been used in many different contexts for the past 30 years, it was not until recently that the probability density function (pdf) and cumulative distribution function (cdf) were derived and made available. Focusing on both univariate and multivariate nonnormal data generation, Statistical Simulation: Power Method Polynomials and Other Transformations presents techniques for conducting a Monte Carlo simulation study. It shows how to use power method polynomials for simulating univariate and multivariate nonnormal distributions with specified cumulants and correlation matrices. The book first explores the methodology underlying the power method, before demonstrating this method through examples of standard normal, logistic, and uniform power method pdfs. It also discusses methods for improving the performance of a simulation based on power method polynomials. The book then develops simulation procedures for systems of linear statistical models, intraclass correlation coefficients, and correlated continuous variates and ranks. Numerical examples and results from Monte Carlo simulations illustrate these procedures. The final chapter describes how the g-and-h and generalized lambda distribution (GLD) transformations are special applications of the more general multivariate nonnormal data generation approach. Throughout the text, the author employs Mathematica® in a range of procedures and offers the source code for download online. Written by a longtime researcher of the power method, this book explains how to simulate nonnormal distributions via easy-to-use power method polynomials. By using the methodology and techniques developed in the text, readers can evaluate different transformations in terms of comparing percentiles, measures of central tendency, goodness-of-fit tests, and more.

Statistical Simulation

Author: Todd C. Headrick
Publisher: Chapman and Hall/CRC
ISBN: 9781420064902
Size: 80.87 MB
Format: PDF, Kindle
View: 4406
Download and Read
Although power method polynomials based on the standard normal distributions have been used in many different contexts for the past 30 years, it was not until recently that the probability density function (pdf) and cumulative distribution function (cdf) were derived and made available. Focusing on both univariate and multivariate nonnormal data generation, Statistical Simulation: Power Method Polynomials and Other Transformations presents techniques for conducting a Monte Carlo simulation study. It shows how to use power method polynomials for simulating univariate and multivariate nonnormal distributions with specified cumulants and correlation matrices. The book first explores the methodology underlying the power method, before demonstrating this method through examples of standard normal, logistic, and uniform power method pdfs. It also discusses methods for improving the performance of a simulation based on power method polynomials. The book then develops simulation procedures for systems of linear statistical models, intraclass correlation coefficients, and correlated continuous variates and ranks. Numerical examples and results from Monte Carlo simulations illustrate these procedures. The final chapter describes how the g-and-h and generalized lambda distribution (GLD) transformations are special applications of the more general multivariate nonnormal data generation approach. Throughout the text, the author employs Mathematica® in a range of procedures and offers the source code for download online. Written by a longtime researcher of the power method, this book explains how to simulate nonnormal distributions via easy-to-use power method polynomials. By using the methodology and techniques developed in the text, readers can evaluate different transformations in terms of comparing percentiles, measures of central tendency, goodness-of-fit tests, and more.

Introduction To Scientific Programming And Simulation Using R Second Edition

Author: Owen Jones
Publisher: CRC Press
ISBN: 1466570016
Size: 29.64 MB
Format: PDF, ePub, Mobi
View: 2967
Download and Read
Learn How to Program Stochastic Models Highly recommended, the best-selling first edition of Introduction to Scientific Programming and Simulation Using R was lauded as an excellent, easy-to-read introduction with extensive examples and exercises. This second edition continues to introduce scientific programming and stochastic modelling in a clear, practical, and thorough way. Readers learn programming by experimenting with the provided R code and data. The book’s four parts teach: Core knowledge of R and programming concepts How to think about mathematics from a numerical point of view, including the application of these concepts to root finding, numerical integration, and optimisation Essentials of probability, random variables, and expectation required to understand simulation Stochastic modelling and simulation, including random number generation and Monte Carlo integration In a new chapter on systems of ordinary differential equations (ODEs), the authors cover the Euler, midpoint, and fourth-order Runge-Kutta (RK4) schemes for solving systems of first-order ODEs. They compare the numerical efficiency of the different schemes experimentally and show how to improve the RK4 scheme by using an adaptive step size. Another new chapter focuses on both discrete- and continuous-time Markov chains. It describes transition and rate matrices, classification of states, limiting behaviour, Kolmogorov forward and backward equations, finite absorbing chains, and expected hitting times. It also presents methods for simulating discrete- and continuous-time chains as well as techniques for defining the state space, including lumping states and supplementary variables. Building readers’ statistical intuition, Introduction to Scientific Programming and Simulation Using R, Second Edition shows how to turn algorithms into code. It is designed for those who want to make tools, not just use them. The code and data are available for download from CRAN.

Statistical Methods In Water Resources

Author: D.R. Helsel
Publisher: Elsevier
ISBN: 9780080875088
Size: 13.32 MB
Format: PDF, ePub, Docs
View: 621
Download and Read
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources. The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies. The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.

A Guide To Monte Carlo Simulations In Statistical Physics

Author: David P. Landau
Publisher: Cambridge University Press
ISBN: 1316062635
Size: 75.48 MB
Format: PDF, Docs
View: 3916
Download and Read
Dealing with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, this book provides an introduction to computer simulations in physics. This fourth edition contains extensive new material describing numerous powerful algorithms not covered in previous editions, in some cases representing new developments that have only recently appeared. Older methodologies whose impact was previously unclear or unappreciated are also introduced, in addition to many small revisions that bring the text and cited literature up to date. This edition also introduces the use of petascale computing facilities in the Monte Carlo arena. Throughout the book there are many applications, examples, recipes, case studies, and exercises to help the reader understand the material. It is ideal for graduate students and researchers, both in academia and industry, who want to learn techniques that have become a third tool of physical science, complementing experiment and analytical theory.

Monte Carlo Simulation Based Statistical Modeling

Author: Ding-Geng (Din) Chen
Publisher: Springer
ISBN: 9811033072
Size: 17.63 MB
Format: PDF
View: 5971
Download and Read
This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.

Sas For Monte Carlo Studies

Author: Xitao Fan
Publisher: SAS Institute
ISBN: 9781590474921
Size: 80.43 MB
Format: PDF, Mobi
View: 412
Download and Read
With the advance of computing technology, Monte Carlo simulation research has become increasingly popular among quantitative researchers in a variety of disciplines. More and more, statistical methods are being subjected to rigorous empirical scrutiny in the form of statistical simulation so that their limitations and strengths can be understood. With the combination of powerful built-in statistical procedures and versatile programming capabilities, SAS is ideal for conducting Monte Carlo simulation research! Xitao Fan, Akos Felsovalyi, Stephen Sivo, and Sean Keenan's SAS for Monte Carlo Studies: A Guide for Quantitative Researchers provides detailed and practical guidance for conducting Monte Carlo studies using SAS. Quantitative researchers will find this book attractive for its practicality and for its many hands-on application examples of Monte Carlo research.

Statistical Learning With Sparsity

Author: Trevor Hastie
Publisher: CRC Press
ISBN: 1498712177
Size: 54.38 MB
Format: PDF, ePub
View: 3927
Download and Read
Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data. Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of l1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso. In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.