Download stochastic approximation and its applications nonconvex optimization and its applications in pdf or read stochastic approximation and its applications nonconvex optimization and its applications in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get stochastic approximation and its applications nonconvex optimization and its applications in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Stochastic Approximation And Its Applications

Author: Han-Fu Chen
Publisher: Springer Science & Business Media
ISBN: 0306481669
Size: 51.55 MB
Format: PDF, ePub, Docs
View: 7116
Download and Read
Estimating unknown parameters based on observation data conta- ing information about the parameters is ubiquitous in diverse areas of both theory and application. For example, in system identification the unknown system coefficients are estimated on the basis of input-output data of the control system; in adaptive control systems the adaptive control gain should be defined based on observation data in such a way that the gain asymptotically tends to the optimal one; in blind ch- nel identification the channel coefficients are estimated using the output data obtained at the receiver; in signal processing the optimal weighting matrix is estimated on the basis of observations; in pattern classifi- tion the parameters specifying the partition hyperplane are searched by learning, and more examples may be added to this list. All these parameter estimation problems can be transformed to a root-seeking problem for an unknown function. To see this, let - note the observation at time i. e. , the information available about the unknown parameters at time It can be assumed that the parameter under estimation denoted by is a root of some unknown function This is not a restriction, because, for example, may serve as such a function.

Stochastic Adaptive Search For Global Optimization

Author: Z.B. Zabinsky
Publisher: Springer Science & Business Media
ISBN: 1441991824
Size: 24.39 MB
Format: PDF, ePub, Docs
View: 4042
Download and Read
The field of global optimization has been developing at a rapid pace. There is a journal devoted to the topic, as well as many publications and notable books discussing various aspects of global optimization. This book is intended to complement these other publications with a focus on stochastic methods for global optimization. Stochastic methods, such as simulated annealing and genetic algo rithms, are gaining in popularity among practitioners and engineers be they are relatively easy to program on a computer and may be cause applied to a broad class of global optimization problems. However, the theoretical performance of these stochastic methods is not well under stood. In this book, an attempt is made to describe the theoretical prop erties of several stochastic adaptive search methods. Such a theoretical understanding may allow us to better predict algorithm performance and ultimately design new and improved algorithms. This book consolidates a collection of papers on the analysis and de velopment of stochastic adaptive search. The first chapter introduces random search algorithms. Chapters 2-5 describe the theoretical anal ysis of a progression of algorithms. A main result is that the expected number of iterations for pure adaptive search is linear in dimension for a class of Lipschitz global optimization problems. Chapter 6 discusses algorithms, based on the Hit-and-Run sampling method, that have been developed to approximate the ideal performance of pure random search. The final chapter discusses several applications in engineering that use stochastic adaptive search methods.

Multilevel Optimization Algorithms And Applications

Author: A. Migdalas
Publisher: Springer Science & Business Media
ISBN: 1461303079
Size: 57.72 MB
Format: PDF
View: 5784
Download and Read
Researchers working with nonlinear programming often claim "the word is non linear" indicating that real applications require nonlinear modeling. The same is true for other areas such as multi-objective programming (there are always several goals in a real application), stochastic programming (all data is uncer tain and therefore stochastic models should be used), and so forth. In this spirit we claim: The word is multilevel. In many decision processes there is a hierarchy of decision makers, and decisions are made at different levels in this hierarchy. One way to handle such hierar chies is to focus on one level and include other levels' behaviors as assumptions. Multilevel programming is the research area that focuses on the whole hierar chy structure. In terms of modeling, the constraint domain associated with a multilevel programming problem is implicitly determined by a series of opti mization problems which must be solved in a predetermined sequence. If only two levels are considered, we have one leader (associated with the upper level) and one follower (associated with the lower level).

Introduction To Global Optimization

Author: R. Horst
Publisher: Springer Science & Business Media
ISBN: 9780792367567
Size: 79.83 MB
Format: PDF, Docs
View: 3981
Download and Read
Most of the existing books on optimization focus on the problem of computing locally optimal solutions. Global optimization is concerned with the computation and characterization of global optima of nonlinear functions. Global optimization problems are widespread in the mathematical modeling of real world systems for a very broad range of applications. During the past three decades many new theoretical, algorithmic, and computational contributions have helped to solve globally multi-extreme problems arising from important practical applications. Introduction to Global Optimization is the first comprehensive textbook that covers the fundamentals in global optimization. The second edition includes algorithms, applications, and complexity results for quadratic programming, concave minimization, DC and Lipshitz problems, decomposition algorithms for nonconvex optimization, and nonlinear network flow problems. Each chapter contains illustrative examples and ends with carefully selected exercises, which are designed to help the student to get a grasp of the material and enhance their knowledge of global optimization methods. Audience: This textbook is addressed not only to students of mathematical programming, but to all scientists in various disciplines who need global optimization methods to model and solve problems.

Variational And Non Variational Methods In Nonlinear Analysis And Boundary Value Problems

Author: Dumitru Motreanu
Publisher: Springer Science & Business Media
ISBN: 1475769210
Size: 25.84 MB
Format: PDF
View: 2585
Download and Read
This book reflects a significant part of authors' research activity dur ing the last ten years. The present monograph is constructed on the results obtained by the authors through their direct cooperation or due to the authors separately or in cooperation with other mathematicians. All these results fit in a unitary scheme giving the structure of this work. The book is mainly addressed to researchers and scholars in Pure and Applied Mathematics, Mechanics, Physics and Engineering. We are greatly indebted to Viorica Venera Motreanu for the careful reading of the manuscript and helpful comments on important issues. We are also grateful to our Editors of Kluwer Academic Publishers for their professional assistance. Our deepest thanks go to our numerous scientific collaborators and friends, whose work was so important for us. D. Motreanu and V. Radulescu IX Introduction The present monograph is based on original results obtained by the authors in the last decade. This book provides a comprehensive expo sition of some modern topics in nonlinear analysis with applications to the study of several classes of boundary value problems. Our framework includes multivalued elliptic problems with discontinuities, variational inequalities, hemivariational inequalities and evolution problems. The treatment relies on variational methods, monotonicity principles, topo logical arguments and optimization techniques. Excepting Sections 1 and 3 in Chapter 1 and Sections 1 and 3 in Chapter 2, the material is new in comparison with any other book, representing research topics where the authors contributed. The outline of our work is the following.

Bayesian Time Series Models

Author: David Barber
Publisher: Cambridge University Press
ISBN: 0521196760
Size: 31.52 MB
Format: PDF, Docs
View: 3129
Download and Read
The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.

Probabilistic Constrained Optimization

Author: Stanislav Uryasev
Publisher: Springer Science & Business Media
ISBN: 1475731507
Size: 48.58 MB
Format: PDF, Mobi
View: 4238
Download and Read
Probabilistic and percentile/quantile functions play an important role in several applications, such as finance (Value-at-Risk), nuclear safety, and the environment. Recently, significant advances have been made in sensitivity analysis and optimization of probabilistic functions, which is the basis for construction of new efficient approaches. This book presents the state of the art in the theory of optimization of probabilistic functions and several engineering and finance applications, including material flow systems, production planning, Value-at-Risk, asset and liability management, and optimal trading strategies for financial derivatives (options). Audience: The book is a valuable source of information for faculty, students, researchers, and practitioners in financial engineering, operation research, optimization, computer science, and related areas.

Topics In Nonconvex Optimization

Author: Shashi K. Mishra
Publisher: Springer Science & Business Media
ISBN: 9781441996404
Size: 64.81 MB
Format: PDF, Kindle
View: 6812
Download and Read
Nonconvex Optimization is a multi-disciplinary research field that deals with the characterization and computation of local/global minima/maxima of nonlinear, nonconvex, nonsmooth, discrete and continuous functions. Nonconvex optimization problems are frequently encountered in modeling real world systems for a very broad range of applications including engineering, mathematical economics, management science, financial engineering, and social science. This contributed volume consists of selected contributions from the Advanced Training Programme on Nonconvex Optimization and Its Applications held at Banaras Hindu University in March 2009. It aims to bring together new concepts, theoretical developments, and applications from these researchers. Both theoretical and applied articles are contained in this volume which adds to the state of the art research in this field. Topics in Nonconvex Optimization is suitable for advanced graduate students and researchers in this area.