Download stochastic volatility modeling chapman and hall crc financial mathematics series in pdf or read stochastic volatility modeling chapman and hall crc financial mathematics series in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get stochastic volatility modeling chapman and hall crc financial mathematics series in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Stochastic Volatility Modeling

Author: Lorenzo Bergomi
Publisher: CRC Press
ISBN: 1482244071
Size: 77.61 MB
Format: PDF, Mobi
View: 6199
Download and Read
Packed with insights, Lorenzo Bergomi’s Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including: Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does calibration make sense? This manual covers the practicalities of modeling local volatility, stochastic volatility, local-stochastic volatility, and multi-asset stochastic volatility. In the course of this exploration, the author, Risk’s 2009 Quant of the Year and a leading contributor to volatility modeling, draws on his experience as head quant in Société Générale’s equity derivatives division. Clear and straightforward, the book takes readers through various modeling challenges, all originating in actual trading/hedging issues, with a focus on the practical consequences of modeling choices.

Nonlinear Option Pricing

Author: Julien Guyon
Publisher: CRC Press
ISBN: 1466570334
Size: 70.52 MB
Format: PDF, ePub, Docs
View: 7161
Download and Read
New Tools to Solve Your Option Pricing Problems For nonlinear PDEs encountered in quantitative finance, advanced probabilistic methods are needed to address dimensionality issues. Written by two leaders in quantitative research—including Risk magazine’s 2013 Quant of the Year—Nonlinear Option Pricing compares various numerical methods for solving high-dimensional nonlinear problems arising in option pricing. Designed for practitioners, it is the first authored book to discuss nonlinear Black-Scholes PDEs and compare the efficiency of many different methods. Real-World Solutions for Quantitative Analysts The book helps quants develop both their analytical and numerical expertise. It focuses on general mathematical tools rather than specific financial questions so that readers can easily use the tools to solve their own nonlinear problems. The authors build intuition through numerous real-world examples of numerical implementation. Although the focus is on ideas and numerical examples, the authors introduce relevant mathematical notions and important results and proofs. The book also covers several original approaches, including regression methods and dual methods for pricing chooser options, Monte Carlo approaches for pricing in the uncertain volatility model and the uncertain lapse and mortality model, the Markovian projection method and the particle method for calibrating local stochastic volatility models to market prices of vanilla options with/without stochastic interest rates, the a + bλ technique for building local correlation models that calibrate to market prices of vanilla options on a basket, and a new stochastic representation of nonlinear PDE solutions based on marked branching diffusions.

Financial Modelling With Jump Processes

Author: Peter Tankov
Publisher: CRC Press
ISBN: 0203485211
Size: 47.97 MB
Format: PDF, ePub, Mobi
View: 3350
Download and Read
WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematical tools required for applications can be intimidating. Potential users often get the impression that jump and Lévy processes are beyond their reach. Financial Modelling with Jump Processes shows that this is not so. It provides a self-contained overview of the theoretical, numerical, and empirical aspects involved in using jump processes in financial modelling, and it does so in terms within the grasp of nonspecialists. The introduction of new mathematical tools is motivated by their use in the modelling process, and precise mathematical statements of results are accompanied by intuitive explanations. Topics covered in this book include: jump-diffusion models, Lévy processes, stochastic calculus for jump processes, pricing and hedging in incomplete markets, implied volatility smiles, time-inhomogeneous jump processes and stochastic volatility models with jumps. The authors illustrate the mathematical concepts with many numerical and empirical examples and provide the details of numerical implementation of pricing and calibration algorithms. This book demonstrates that the concepts and tools necessary for understanding and implementing models with jumps can be more intuitive that those involved in the Black Scholes and diffusion models. If you have even a basic familiarity with quantitative methods in finance, Financial Modelling with Jump Processes will give you a valuable new set of tools for modelling market fluctuations.

Analysis Geometry And Modeling In Finance

Author: Pierre Henry-Labordère
Publisher: CRC Press
ISBN: 9781420087000
Size: 24.49 MB
Format: PDF, Kindle
View: 1780
Download and Read
Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing is the first book that applies advanced analytical and geometrical methods used in physics and mathematics to the financial field. It even obtains new results when only approximate and partial solutions were previously available. Through the problem of option pricing, the author introduces powerful tools and methods, including differential geometry, spectral decomposition, and supersymmetry, and applies these methods to practical problems in finance. He mainly focuses on the calibration and dynamics of implied volatility, which is commonly called smile. The book covers the Black–Scholes, local volatility, and stochastic volatility models, along with the Kolmogorov, Schrödinger, and Bellman–Hamilton–Jacobi equations. Providing both theoretical and numerical results throughout, this book offers new ways of solving financial problems using techniques found in physics and mathematics.

Stochastic Finance

Author: Jan Vecer
Publisher: CRC Press
ISBN: 1439812527
Size: 65.85 MB
Format: PDF, ePub, Mobi
View: 2616
Download and Read
Unlike much of the existing literature, Stochastic Finance: A Numeraire Approach treats price as a number of units of one asset needed for an acquisition of a unit of another asset instead of expressing prices in dollar terms exclusively. This numeraire approach leads to simpler pricing options for complex products, such as barrier, lookback, quanto, and Asian options. Most of the ideas presented rely on intuition and basic principles, rather than technical computations. The first chapter of the book introduces basic concepts of finance, including price, no arbitrage, portfolio, financial contracts, the First Fundamental Theorem of Asset Pricing, and the change of numeraire formula. Subsequent chapters apply these general principles to three kinds of models: binomial, diffusion, and jump models. The author uses the binomial model to illustrate the relativity of the reference asset. In continuous time, he covers both diffusion and jump models in the evolution of price processes. The book also describes term structure models and numerous options, including European, barrier, lookback, quanto, American, and Asian. Classroom-tested at Columbia University to graduate students, Wall Street professionals, and aspiring quants, this text provides a deep understanding of derivative contracts. It will help a variety of readers from the dynamic world of finance, from practitioners who want to expand their knowledge of stochastic finance, to students who want to succeed as professionals in the field, to academics who want to explore relatively advanced techniques of the numeraire change.

Computational Methods In Finance

Author: Ali Hirsa
Publisher: CRC Press
ISBN: 1466576049
Size: 54.17 MB
Format: PDF, Docs
View: 6592
Download and Read
As today’s financial products have become more complex, quantitative analysts, financial engineers, and others in the financial industry now require robust techniques for numerical analysis. Covering advanced quantitative techniques, Computational Methods in Finance explains how to solve complex functional equations through numerical methods. The first part of the book describes pricing methods for numerous derivatives under a variety of models. The book reviews common processes for modeling assets in different markets. It then examines many computational approaches for pricing derivatives. These include transform techniques, such as the fast Fourier transform, the fractional fast Fourier transform, the Fourier-cosine method, and saddlepoint method; the finite difference method for solving PDEs in the diffusion framework and PIDEs in the pure jump framework; and Monte Carlo simulation. The next part focuses on essential steps in real-world derivative pricing. The author discusses how to calibrate model parameters so that model prices are compatible with market prices. He also covers various filtering techniques and their implementations and gives examples of filtering and parameter estimation. Developed from the author’s courses at Columbia University and the Courant Institute of New York University, this self-contained text is designed for graduate students in financial engineering and mathematical finance as well as practitioners in the financial industry. It will help readers accurately price a vast array of derivatives.

Monte Carlo Methods And Models In Finance And Insurance

Author: Ralf Korn
Publisher: CRC Press
ISBN: 9781420076196
Size: 61.33 MB
Format: PDF, ePub
View: 6548
Download and Read
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath–Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of stochastic processes with continuous and discontinuous paths. It also covers a wide selection of popular models in finance and insurance, from Black–Scholes to stochastic volatility to interest rate to dynamic mortality. Through its many numerical and graphical illustrations and simple, insightful examples, this book provides a deep understanding of the scope of Monte Carlo methods and their use in various financial situations. The intuitive presentation encourages readers to implement and further develop the simulation methods.

Interest Rate Modeling

Author: Lixin Wu
Publisher: CRC Press
ISBN: 1420090577
Size: 58.49 MB
Format: PDF, Mobi
View: 1056
Download and Read
Containing many results that are new or exist only in recent research articles, Interest Rate Modeling: Theory and Practice portrays the theory of interest rate modeling as a three-dimensional object of finance, mathematics, and computation. It introduces all models with financial-economical justifications, develops options along the martingale approach, and handles option evaluations with precise numerical methods. The text begins with the mathematical foundations, including Ito’s calculus and the martingale representation theorem. It then introduces bonds and bond yields, followed by the Heath–Jarrow–Morton (HJM) model, which is the framework for no-arbitrage pricing models. The next chapter focuses on when the HJM model implies a Markovian short-rate model and discusses the construction and calibration of short-rate lattice models. In the chapter on the LIBOR market model, the author presents the simplest yet most robust formula for swaption pricing in the literature. He goes on to address model calibration, an important aspect of model applications in the markets; industrial issues; and the class of affine term structure models for interest rates. Taking a top-down approach, Interest Rate Modeling provides readers with a clear picture of this important subject by not overwhelming them with too many specific models. The text captures the interdisciplinary nature of the field and shows readers what it takes to be a competent quant in today’s market. This book can be adopted for instructional use. For this purpose, a solutions manual is available for qualifying instructors.

Counterparty Risk And Funding

Author: Stéphane Crépey
Publisher: CRC Press
ISBN: 1498785700
Size: 62.63 MB
Format: PDF, Docs
View: 6320
Download and Read
Solve the DVA/FVA Overlap Issue and Effectively Manage Portfolio Credit Risk Counterparty Risk and Funding: A Tale of Two Puzzles explains how to study risk embedded in financial transactions between the bank and its counterparty. The authors provide an analytical basis for the quantitative methodology of dynamic valuation, mitigation, and hedging of bilateral counterparty risk on over-the-counter (OTC) derivative contracts under funding constraints. They explore credit, debt, funding, liquidity, and rating valuation adjustment (CVA, DVA, FVA, LVA, and RVA) as well as replacement cost (RC), wrong-way risk, multiple funding curves, and collateral. The first part of the book assesses today’s financial landscape, including the current multi-curve reality of financial markets. In mathematical but model-free terms, the second part describes all the basic elements of the pricing and hedging framework. Taking a more practical slant, the third part introduces a reduced-form modeling approach in which the risk of default of the two parties only shows up through their default intensities. The fourth part addresses counterparty risk on credit derivatives through dynamic copula models. In the fifth part, the authors present a credit migrations model that allows you to account for rating-dependent credit support annex (CSA) clauses. They also touch on nonlinear FVA computations in credit portfolio models. The final part covers classical tools from stochastic analysis and gives a brief introduction to the theory of Markov copulas. The credit crisis and ongoing European sovereign debt crisis have shown the importance of the proper assessment and management of counterparty risk. This book focuses on the interaction and possible overlap between DVA and FVA terms. It also explores the particularly challenging issue of counterparty risk in portfolio credit modeling. Primarily for researchers and graduate students in financial mathematics, the book is also suitable for financial quants, managers in banks, CVA desks, and members of supervisory bodies.

Model Free Hedging

Author: Pierre Henry-Labordere
Publisher: CRC Press
ISBN: 1351666231
Size: 16.38 MB
Format: PDF
View: 1221
Download and Read
Model-free Hedging: A Martingale Optimal Transport Viewpoint focuses on the computation of model-independent bounds for exotic options consistent with market prices of liquid instruments such as Vanilla options. The author gives an overview of Martingale Optimal Transport, highlighting the differences between the optimal transport and its martingale counterpart. This topic is then discussed in the context of mathematical finance.