Download structural dynamics of earthquake engineering theory and application using mathematica and matlab woodhead publishing series in civil and structural engineering in pdf or read structural dynamics of earthquake engineering theory and application using mathematica and matlab woodhead publishing series in civil and structural engineering in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get structural dynamics of earthquake engineering theory and application using mathematica and matlab woodhead publishing series in civil and structural engineering in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Structural Dynamics Of Earthquake Engineering

Author: S Rajasekaran
Publisher: Elsevier
ISBN: 1845695739
Size: 49.21 MB
Format: PDF, ePub
View: 4870
Download and Read
Given the risk of earthquakes in many countries, knowing how structural dynamics can be applied to earthquake engineering of structures, both in theory and practice, is a vital aspect of improving the safety of buildings and structures. It can also reduce the number of deaths and injuries and the amount of property damage. The book begins by discussing free vibration of single-degree-of-freedom (SDOF) systems, both damped and undamped, and forced vibration (harmonic force) of SDOF systems. Response to periodic dynamic loadings and impulse loads are also discussed, as are two degrees of freedom linear system response methods and free vibration of multiple degrees of freedom. Further chapters cover time history response by natural mode superposition, numerical solution methods for natural frequencies and mode shapes and differential quadrature, transformation and Finite Element methods for vibration problems. Other topics such as earthquake ground motion, response spectra and earthquake analysis of linear systems are discussed. Structural dynamics of earthquake engineering: theory and application using Mathematica and Matlab provides civil and structural engineers and students with an understanding of the dynamic response of structures to earthquakes and the common analysis techniques employed to evaluate these responses. Worked examples in Mathematica and Matlab are given. Explains the dynamic response of structures to earthquakes including periodic dynamic loadings and impulse loads Examines common analysis techniques such as natural mode superposition, the finite element method and numerical solutions Investigates this important topic in terms of both theory and practise with the inclusion of practical exercise and diagrams

Handbook Of Seismic Risk Analysis And Management Of Civil Infrastructure Systems

Author: S Tesfamariam
Publisher: Elsevier
ISBN: 0857098985
Size: 77.98 MB
Format: PDF, Mobi
View: 6572
Download and Read
Earthquakes represent a major risk to buildings, bridges and other civil infrastructure systems, causing catastrophic loss to modern society. Handbook of seismic risk analysis and management of civil infrastructure systems reviews the state of the art in the seismic risk analysis and management of civil infrastructure systems. Part one reviews research in the quantification of uncertainties in ground motion and seismic hazard assessment. Part twi discusses methodologies in seismic risk analysis and management, whilst parts three and four cover the application of seismic risk assessment to buildings, bridges, pipelines and other civil infrastructure systems. Part five also discusses methods for quantifying dependency between different infrastructure systems. The final part of the book considers ways of assessing financial and other losses from earthquake damage as well as setting insurance rates. Handbook of seismic risk analysis and management of civil infrastructure systems is an invaluable guide for professionals requiring understanding of the impact of earthquakes on buildings and lifelines, and the seismic risk assessment and management of buildings, bridges and transportation. It also provides a comprehensive overview of seismic risk analysis for researchers and engineers within these fields. This important handbook reviews the wealth of recent research in the area of seismic hazard analysis in modern earthquake design code provisions and practices Examines research into the analysis of ground motion and seismic hazard assessment, seismic risk hazard methodologies Addresses the assessment of seismic risks to buildings, bridges, water supply systems and other aspects of civil infrastructure

Proceedings Of International Conference On Advances In Tribology And Engineering Systems

Author: Himanshu C. Patel
Publisher: Springer Science & Business Media
ISBN: 8132216563
Size: 27.92 MB
Format: PDF, Kindle
View: 2434
Download and Read
This book contains advanced-level research material in the area of lubrication theory and related aspects, presented by eminent researchers during the International Conference on Advances in Tribology and Engineering Systems (ICATES 2013) held at Gujarat Technological University, Ahmedabad, India during October 15–17, 2013. The material in this book represents the advanced field of tribology and reflects the work of many eminent researchers from both India and abroad. The treatment of the presentations is the result of the contributions of several professionals working in the industry and academia. This book will be useful for students, researchers, academicians, and professionals working in the area of tribology, in general, and bearing performance characteristics, in particular, especially from the point-of-view of design. This book will also appeal to researchers and professionals working in fluid-film lubrication and other practical applications of tribology. A wide range of topics has been included despite space and time constraints. Basic concepts and fundamentals techniques have been emphasized upon, while also including highly specialized topics and methods (such as nanotribology, bio-nanotribology). Care has been taken to generate interest for a wide range of readers, considering the interdisciplinary nature of the subject.

Neural Networks Fuzzy Systems And Evolutionary Algorithms Synthesis And Applications

Publisher: PHI Learning Pvt. Ltd.
ISBN: 812035334X
Size: 68.92 MB
Format: PDF, ePub
View: 1547
Download and Read
The second edition of this book provides a comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence, which in recent years, has turned synonymous to it. The constituent technologies discussed comprise neural network (NN), fuzzy system (FS), evolutionary algorithm (EA), and a number of hybrid systems, which include classes such as neuro-fuzzy, evolutionary-fuzzy, and neuro-evolutionary systems. The hybridization of the technologies is demonstrated on architectures such as fuzzy backpropagation network (NN-FS hybrid), genetic algorithm-based backpropagation network (NN-EA hybrid), simplified fuzzy ARTMAP (NN-FS hybrid), fuzzy associative memory (NN-FS hybrid), fuzzy logic controlled genetic algorithm (EA-FS hybrid) and evolutionary extreme learning machine (NN-EA hybrid) Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book, with a wealth of information that is clearly presented and illustrated by many examples and applications, is designed for use as a text for the courses in soft computing at both the senior undergraduate and first-year postgraduate levels of computer science and engineering. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.

Computational Fluid Structure Interaction

Author: Yuri Bazilevs
Publisher: John Wiley & Sons
ISBN: 111848357X
Size: 26.88 MB
Format: PDF
View: 6776
Download and Read
Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.

Construction Calculations Manual

Author: Sidney M Levy
Publisher: Butterworth-Heinemann
ISBN: 0123822440
Size: 14.39 MB
Format: PDF, Mobi
View: 7573
Download and Read
Construction Calculations is a manual that provides end users with a comprehensive guide for many of the formulas, mathematical vectors and conversion factors that are commonly encountered during the design and construction stages of a construction project. It offers readers detailed calculations, applications and examples needed in site work, cost estimation, piping and pipefitting, and project management. The book also serves as a refresher course for some of the formulas and concepts of geometry and trigonometry. The book is divided into sections that present the common components of construction. The first section of the books starts with a refresher discussion of unit and systems measurement; its origin and evolution; the standards of length, mass and capacity; terminology and tables; and notes of metric, U.S, and British units of measurements. The following concepts are presented and discussed throughout the book: Conversion tables and formulas, including the Metric Conversion Law and conversion factors for builders and design professionals Calculations and formulas of geometry, trigonometry and physics in construction Rudiments of excavation, classification, use of material, measurement and payment Soil classification and morphology, including its physicochemical properties Formulas and calculations needed for soil tests and evaluations and for the design of retaining structures Calculations relating to concrete and masonry Calculations of the size/weight of structural steel and other metals Mechanical properties of wood and processing of wood products Calculations relating to sound and thermal transmission Interior finishes, plumbing and HVAC calculations Electrical formulas and calculations Construction managers and engineers, architects, contractors, and beginners in engineering, architecture, and construction will find this practical guide useful for managing all aspects of construction. Work in and convert between building dimensions, including metric Built-in right-angle solutions Areas, volumes, square-ups Complete stair layouts Roof, rafter and framing solutions Circle: arcs, circumference, segments

Elements Of Earthquake Engineering And Structural Dynamics

Author: André Filiatrault
Publisher: Presses inter Polytechnique
ISBN: 2553016492
Size: 67.52 MB
Format: PDF, Mobi
View: 4986
Download and Read
"In order to reduce the seismic risk facing many densely populated regions worldwide, including Canada and the United States, modern earthquake engineering should be more widely applied. But current literature on earthquake engineering may be difficult to grasp for structural engineers who are untrained in seismic design. In addition no single resource addressed seismic design practices in both Canada and the United States until now. Elements of Earthquake Engineering and Structural Dynamics was written to fill the gap. It presents the key elements of earthquake engineering and structural dynamics at an introductory level and gives readers the basic knowledge they need to apply the seismic provisions contained in Canadian and American building codes."--Résumé de l'éditeur.

A Heat Transfer Textbook

Author: John H Lienhard
Publisher: Courier Corporation
ISBN: 0486318370
Size: 38.85 MB
Format: PDF, Docs
View: 4821
Download and Read
This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' insight into related phenomena. Three introductory chapters form a minicourse in heat transfer, covering all of the subjects discussed in detail in subsequent chapters. This unique and effective feature introduces heat exchangers early in the development, rather than at the end. The authors also present a novel and simplified method for dimensional analysis, and they capitalize on the similarity of natural convection and film condensation to develop these two topics in a parallel manner. Worked examples and end-of-chapter exercises appear throughout the book, along with well-drawn, illuminating figures.