Download surface engineering in pdf or read surface engineering in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get surface engineering in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Advanced Techniques For Surface Engineering

Author: W. Gissler
Publisher: Springer Science & Business Media
ISBN: 9780792320067
Size: 57.21 MB
Format: PDF, ePub
View: 394
Download and Read
The hardest requirements on a material are in general imposed at the surface: it has to be wear resistant for tools and bearings; corrosion resistant for turbine blades; antireflecting for solar cells; and it must combine several of these properties in other applications. `Surface engineering' is the general term that incorporates all the techniques by which a surface modification can be accomplished. These techniques include both the more traditional methods, such as nitriding, boriding and carburizing, and the newer ones, such as ion implantation, laser beam melting and, in particular, coating. This book comprises and compares in a unique way all these techniques of surface engineering. It is a compilation of lectures which were held by renowned scientists and engineers in the frame of the well known `EuroCourses' of the Joint Research Centre of the Commission of the European Communities. The book is principally addressed to material and surface scientists, physicists and chemists, engineers and technicians of industries and institutes where surface engineering problems arise.

Surface Engineering Of Light Alloys

Author: Hanshan Dong
Publisher: Elsevier
ISBN: 1845699459
Size: 78.73 MB
Format: PDF, ePub, Mobi
View: 4483
Download and Read
The growing use of light alloys in industries such as aerospace, sports equipment and biomedical devices is driving research into surface engineering technologies to enhance their properties for the desired end use. Surface engineering of light alloys: Aluminium, magnesium and titanium alloys provides a comprehensive review of the latest technologies for modifying the surfaces of light alloys to improve their corrosion, wear and tribological properties. Part one discusses surface degradation of light alloys with chapters on corrosion behaviour of magnesium alloys and protection techniques, wear properties of aluminium-based alloys and tribological behaviour of titanium alloys. Part two reviews surface engineering technologies for light alloys including anodising, plasma electrolytic oxidation, thermal spraying, cold spraying, physical vapour deposition, plasma assisted surface treatment, PIII/PSII treatments, laser surface modification, ceramic conversion and duplex treatments. Part three covers applications for surface engineered light alloys including sports equipment, biomedical devices and plasma electrolytic oxidation and anodised aluminium alloys for spacecraft applications. With its distinguished editor and international team of contributors, Surface engineering of light alloys: Aluminium, magnesium and titanium alloys is a standard reference for engineers, metallurgists and materials scientists looking for a comprehensive source of information on surface engineering of aluminium, magnesium and titanium alloys. Discusses surface degradation of light alloys considering corrosion behaviour and wear and tribological properties Examines surface engineering technologies and modification featuring plasma electrolytic oxidation treatments and both thermal and cold spraying Reviews applications for engineered light alloys in sports equipment, biomedical devices and spacecraft

Introduction To Surface Engineering And Functionally Engineered Materials

Author: Peter Martin
Publisher: John Wiley & Sons
ISBN: 1118171888
Size: 75.87 MB
Format: PDF, ePub, Docs
View: 6919
Download and Read
This book provides a clear and understandable text for users and developers of advanced engineered materials, particularly in the area of thin films, and addresses fundamentals of modifying the optical, electrical, photo-electric, triboligical, and corrosion resistance of solid surfaces and adding functionality to solids by engineering their surface, structure, and electronic, magnetic and optical structure. Thin film applications are emphasized. Through the inclusion of multiple clear examples of the technologies, how to use them,and the synthesis processes involved, the reader will gain a deep understanding of the purpose, goals, and methodology of surface engineering and engineered materials. Virtually every advance in thin film, energy, medical, tribological materials technologies has resulted from surface engineering and engineered materials. Surface engineering involves structures and compositions not found naturally in solids and is used to modify the surface properties of solids and involves application of thin film coatings, surface functionalization and activation, and plasma treatment. Engineered materials are the future of thin film technology. Engineered structures such as superlattices, nanolaminates, nanotubes, nanocomposites, smart materials, photonic bandgap materials, metamaterials, molecularly doped polymers and structured materials all have the capacity to expand and increase the functionality of thin films and coatings used in a variety of applications and provide new applications. New advanced deposition processes and hybrid processes are being used and developed to deposit advanced thin film materials and structures not possible with conventional techniques a decade ago. Properties can now be engineered into thin films that achieve performance not possible a decade ago.

Surface Engineering Of Metals

Author: Tadeusz Burakowski
Publisher: CRC Press
ISBN: 9781420049923
Size: 34.57 MB
Format: PDF, ePub
View: 5634
Download and Read
Surface Engineering of Metals provides basic definitions of classical and modern surface treatments, addressing mechanisms of formation, microstructure, and properties of surface layers. Part I outlines the fundamentals of surface engineering, presents the history of its development, and proposes a two-category classification of surface layers. Discussions include the basic potential and usable properties of superficial layers and coatings, explaining their concept, interaction with other properties, and the significance of these properties for proper selection and functioning. Part II provides an original classification of the production methods of surface layers. Discussions include the latest technologies in this field, characterized by directional or beam interaction of particles or of the heating medium with the treat surface.

Surface Engineering

Author: Ashok Kumar
Publisher: Minerals, Metals, & Materials Society
ISBN:
Size: 11.14 MB
Format: PDF, Docs
View: 2912
Download and Read
These papers from the 1999 TMS Annual Meeting & Exhibition emphasize fundamental issues related to properties and synthesis, as well as vapor-based coatings developed for specific applications.