Download the chemistry of bio based polymers in pdf or read the chemistry of bio based polymers in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get the chemistry of bio based polymers in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



The Chemistry Of Bio Based Polymers

Author: Johannes Karl Fink
Publisher: John Wiley & Sons
ISBN: 1118837215
Size: 41.63 MB
Format: PDF, Mobi
View: 730
Download and Read
An exhaustive and timely overview of renewable polymers from a respected chemist and successful author The recent explosion of interdisciplinary research has fragmented the knowledge base surrounding renewable polymers. The Chemistry of Bio-based Polymers brings together, in one volume, the research and work of Professor Johannes Fink, focusing on biopolymers that can be synthesized from renewable polymers. After introducing general aspects of the field, the book’s subsequent chapters examine the chemistry of biodegradable polymeric types sorted by their chemical compounds, including the synthesis of low molecular compounds. Various categories of biopolymers are detailed including vinyl-based polymers, acid and lactone polymers, ester and amide polymers, carbohydrate-related polymers and others. Procedures for the preparation of biopolymers and biodegradable nanocomposites are arranged by chemical methods and in vitro biological methods, with discussion of the issue of “plastics from bacteria.” The factors influencing the degradation and biodegradation of polymers used in food packaging, exposed to various environments, are detailed at length. The book covers the medical applications of bio-based polymers, concentrating on controlled drug delivery, temporary prostheses, and scaffolds for tissue engineering. Professor Fink also addresses renewable resources for fabricating biofuels and argues for localized biorefineries, as biomass feedstocks are more efficiently handled locally. Audience The Chemistry of Bio-based Polymers will be read by chemists, polymer and materials scientists, chemical, bio-based, and biomedical engineers, agricultural and environmental faculty and all those who work in the bioeconomy area. This book will be critical for engineers in a number of industries including food packaging, medical devices, personal care, fuels, auto, and construction.

Bio Based Polymers And Composites

Author: Richard Wool
Publisher: Elsevier
ISBN: 9780080454344
Size: 43.71 MB
Format: PDF, Docs
View: 3546
Download and Read
Bio-Based Polymers and Composites is the first book systematically describing the green engineering, chemistry and manufacture of biobased polymers and composites derived from plants. This book gives a thorough introduction to bio-based material resources, availability, sustainability, biobased polymer formation, extraction and refining technologies, and the need for integrated research and multi-disciplinary working teams. It provides an in-depth description of adhesives, resins, plastics, and composites derived from plant oils, proteins, starches, and natural fibers in terms of structures, properties, manufacturing, and product performance. This is an excellent book for scientists, engineers, graduate students and industrial researchers in the field of bio-based materials. * First book describing the utilization of crops to make high performance plastics, adhesives, and composites * Interdisciplinary approach to the subject, integrating genetic engineering, plant science, food science, chemistry, physics, nano-technology, and composite manufacturing. * Explains how to make green materials at low cost from soyoil, proteins, starch, natural fibers, recycled newspapers, chicken feathers and waste agricultural by-products.

Biodegradable And Biobased Polymers For Environmental And Biomedical Applications

Author: Susheel Kalia
Publisher: John Wiley & Sons
ISBN: 1119117348
Size: 53.12 MB
Format: PDF, ePub, Docs
View: 2339
Download and Read
This volume incorporates 13 contributions from renowned experts from the relevant research fields that are related biodegradable and biobased polymers and their environmental and biomedical applications. Specifically, the book highlights: Developments in polyhydroxyalkanoates applications in agriculture, biodegradable packaging material and biomedical field like drug delivery systems, implants, tissue engineering and scaffolds The synthesis and elaboration of cellulose microfibrils from sisal fibres for high performance engineering applications in various sectors such as the automotive and aerospace industries, or for building and construction The different classes and chemical modifications of tannins Electro-activity and applications of Jatropha latex and seed The synthesis, properties and applications of poly(lactic acid) The synthesis, processing and properties of poly(butylene succinate), its copolymers, composites and nanocomposites The different routes for preparation polymers from vegetable oil and the effects of reinforcement and nano-reinforcement on the physical properties of such biobased polymers The different types of modified drug delivery systems together with the concept of the drug delivery matrix for controlled release of drugs and for antitumor drugs The use of nanocellulose as sustainable adsorbents for the removal of water pollutants mainly heavy metal ions, organic molecules, dyes, oil and CO2 The main extraction techniques, structure, properties and different chemical modifications of lignins Proteins and nucleic acids based biopolymers The role of tamarind seed polysaccharide-based multiple-unit systems in sustained drug release

Bio Based Plastics

Author: Stephan Kabasci
Publisher: John Wiley & Sons
ISBN: 1118676734
Size: 43.89 MB
Format: PDF, ePub
View: 2683
Download and Read
The field of bio-based plastics has developed significantly in the last 10 years and there is increasing pressure on industries to shift existing materials production from petrochemicals to renewables. Bio-based Plastics presents an up-to-date overview of the basic and applied aspects of bioplastics, focusing primarily on thermoplastic polymers for material use. Emphasizing materials currently in use or with significant potential for future applications, this book looks at the most important biopolymer classes such as polysaccharides, lignin, proteins and polyhydroxyalkanoates as raw materials for bio-based plastics, as well as materials derived from bio-based monomers like lipids, poly(lactic acid), polyesters, polyamides and polyolefines. Detailed consideration is also given to the market and availability of renewable raw materials, the importance of bio-based content and the aspect of biodegradability. Topics covered include: Starch Cellulose and cellulose acetate Materials based on chitin and chitosan Lignin matrix composites from natural resources Polyhydroxyalkanoates Poly(lactic acid) Polyesters, Polyamides and Polyolefins from biomass derived monomers Protein-based plastics Bio-based Plastics is a valuable resource for academic and industrial researchers who are interested in new materials, renewable resources, sustainability and polymerization technology. It will also prove useful for advanced students interested in the development of bio-based products and materials, green and sustainable chemistry, polymer chemistry and materials science. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs

Bio Based Plant Oil Polymers And Composites

Author: Samy Madbouly
Publisher: William Andrew
ISBN: 0323371280
Size: 38.98 MB
Format: PDF, ePub, Docs
View: 7670
Download and Read
Bio-based Plant Oil Polymers and Composites provides engineers and materials scientists a useful framework to help take advantage of the latest research conducted in this rapidly advancing field—enabling them to develop and commercialize their own products quickly and more successfully. Plant oil is one of the most attractive options as a substitute for non-renewable resources in polymers and composites, and is producing materials with very promising thermomechanical properties relative to traditional, petroleum-based polymers. In addition to critical processing and characterization information, the book assists engineers in deciding whether or not they should use a plant oil-based polymer over a petroleum-based polymer, discussing sustainability concerns, biodegradability, associated costs, and recommended applications. The book details the advancements in the development of polymeric materials and composites from plant oils, and provides a critical review of current applications in various fields, including packaging, biomedical, and automotive applications. Also includes the latest progress in developing multifunctional biobased polymers—by increasing thermal conductivity or adding antibacterial properties, for example. Essential coverage of processing, characterization, and the latest research into polymeric materials and composites derived from plant oils (thermoplastics, thermosets, nanocomposites, and fiber reinforced composites) Critically reviews the potential applications of plant oil-based polymers, including sensors, structural parts, medical devices, and automotive interiors Includes the latest developments in multifunctional bio-based polymer composites

Polymers From Biobased Materials

Author: Helena L. Chum
Publisher: Noyes Publications
ISBN: 9780815512714
Size: 61.85 MB
Format: PDF, Kindle
View: 2496
Download and Read
Polymers from biobased materials are polymers derived from renewable resources by chemical or combined chemical and mechanical methods, or produced directly in biological processes. Combinations of renewable and conventional fossil-fuel-derived plastics are also biobased materials. This assessment reviews materials from renewable resources and their properties including major biopolymers produced by plants and selected animal sources.

Introduction To Polymer Chemistry

Author: Judit E. Puskas, Ph.D
Publisher: DEStech Publications, Inc
ISBN: 1605950300
Size: 50.88 MB
Format: PDF
View: 6739
Download and Read
Fundamental concepts and reactions explained through polymers from plants and animals Macromolecular structures introduced via biological polymers Includes a course syllabus, study questions and exercises Extensive lab guidance and protocols for DNA isolation, amplification using PCR Full color figures shown throughout the text This book connects modern synthetic polymer chemistry to its roots by exploring the chemistry of natural polymers and self-assembled macromolecular structures. Designed to introduce students to the basics of polymer science, the text investigates intermolecular forces, functional groups and key reactions by means of polymers found in, and produced by, living plants and animals, including proteins, rubber, DNA, fibers, lignin, carbohydrates and many others. The author explains how varied natural polymeric systems illustrate a wide array of fundamental polymer concepts. Key analogies are demonstrated between mechanisms in biological and synthetic polymerization, and the text uses growth, DNA replication, self-assembly and other biological processes to assist the student in mastering the terminology and molecular-level mechanisms of polymer chemistry. To guide both instructors and students the book includes the outline of a one-semester course syllabus, end-of-chapter questions, as well as detailed instructions for setting up multiple labs dealing with gene isolation and amplification using polymerase chain reaction techniques (PCR). Each chapter also offers exercises based on real-world examples.

Renewable Resources For Biorefineries

Author: Rafael Luque
Publisher: Royal Society of Chemistry
ISBN: 184973898X
Size: 32.34 MB
Format: PDF, Mobi
View: 3384
Download and Read
An ideal book for upper level undergraduate and postgraduate students taking modules on Renewable resources, green chemistry, sustainable development, environmental science, agricultural science and environmental technology.

Algae Based Polymers Blends And Composites

Author: Khalid Mahmood Zia
Publisher: Elsevier
ISBN: 0128123613
Size: 52.52 MB
Format: PDF, Docs
View: 1430
Download and Read
Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae, blends of algae, and algae based composites. Characterization methods and processing techniques for algae-based polymers and composites are discussed in detail, enabling researchers to apply the latest techniques to their own work. The conversion of bio-mass into high value chemicals, energy, and materials has ample financial and ecological importance, particularly in the era of declining petroleum reserves and global warming. Algae are an important source of biomass since they flourish rapidly and can be cultivated almost everywhere. At present the majority of naturally produced algal biomass is an unused resource and normally is left to decompose. Similarly, the use of this enormous underexploited biomass is mainly limited to food consumption and as bio-fertilizer. However, there is an opportunity here for materials scientists to explore its potential as a feedstock for the production of sustainable materials. Provides detailed information on the extraction of useful compounds from algal biomass Highlights the development of a range of polymers, blends, and composites Includes coverage of characterization and processing techniques, enabling research scientists and engineers to apply the information to their own research and development Discusses potential applications and future prospects of algae-based biopolymers, giving the latest insight into the future of these sustainable materials

Technology And Applications Of Polymers Derived From Biomass

Author: Syed Ali Ashter
Publisher: William Andrew
ISBN: 0323511163
Size: 40.25 MB
Format: PDF, ePub, Docs
View: 1098
Download and Read
Technology and Applications of Polymers Derived from Biomass explores the range of different possible routes from biomass to polymeric materials, including the value and limitations of using biomass in material applications and a comparison of petrochemical-derived polymers and bio-based polymers. The book discusses biomass sources, types, chemistry and handling concerns. It covers the manufacture of industrial chemicals from biomass and the derivation of monomers and polymers from biomass. It also details the processing and applications of biomass-derived polymers to enable materials scientists and engineers realize the potential of biomass as a sustainable source of polymers, including plastics and elastomers. The book is a one-stop-shop reference—giving students a basic understanding of the technology and how the material can be applied to industrial processes they will face in the workforce, and giving materials engineers and product designers the information they need to make more informed material selection decisions. Provides fundamental understanding of an increasingly important approach to sourcing polymeric materials Includes actionable, relevant information to enable materials engineers and product designers consider biomass-derived polymers in the products they are developing Discusses the environmental impact of biomass conversion to help readers improve the sustainability of their operations Compares petrochemical-derived polymers with bio-based polymers