Download the foundations of statistics a simulation based approach in pdf or read the foundations of statistics a simulation based approach in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get the foundations of statistics a simulation based approach in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



The Foundations Of Statistics A Simulation Based Approach

Author: Shravan Vasishth
Publisher: Springer Science & Business Media
ISBN: 3642163130
Size: 38.52 MB
Format: PDF, ePub
View: 7011
Download and Read
Statistics and hypothesis testing are routinely used in areas (such as linguistics) that are traditionally not mathematically intensive. In such fields, when faced with experimental data, many students and researchers tend to rely on commercial packages to carry out statistical data analysis, often without understanding the logic of the statistical tests they rely on. As a consequence, results are often misinterpreted, and users have difficulty in flexibly applying techniques relevant to their own research — they use whatever they happen to have learned. A simple solution is to teach the fundamental ideas of statistical hypothesis testing without using too much mathematics. This book provides a non-mathematical, simulation-based introduction to basic statistical concepts and encourages readers to try out the simulations themselves using the source code and data provided (the freely available programming language R is used throughout). Since the code presented in the text almost always requires the use of previously introduced programming constructs, diligent students also acquire basic programming abilities in R. The book is intended for advanced undergraduate and graduate students in any discipline, although the focus is on linguistics, psychology, and cognitive science. It is designed for self-instruction, but it can also be used as a textbook for a first course on statistics. Earlier versions of the book have been used in undergraduate and graduate courses in Europe and the US. ”Vasishth and Broe have written an attractive introduction to the foundations of statistics. It is concise, surprisingly comprehensive, self-contained and yet quite accessible. Highly recommended.” Harald Baayen, Professor of Linguistics, University of Alberta, Canada ”By using the text students not only learn to do the specific things outlined in the book, they also gain a skill set that empowers them to explore new areas that lie beyond the book’s coverage.” Colin Phillips, Professor of Linguistics, University of Maryland, USA

Handbook Of Research On Advanced Computational Techniques For Simulation Based Engineering

Author: Samui, Pijush
Publisher: IGI Global
ISBN: 1466694807
Size: 36.54 MB
Format: PDF, Mobi
View: 4407
Download and Read
Recent developments in information processing systems have driven the advancement of computational methods in the engineering realm. New models and simulations enable better solutions for problem-solving and overall process improvement. The Handbook of Research on Advanced Computational Techniques for Simulation-Based Engineering is an authoritative reference work representing the latest scholarly research on the application of computational models to improve the quality of engineering design. Featuring extensive coverage on a range of topics from various engineering disciplines, including, but not limited to, soft computing methods, comparative studies, and hybrid approaches, this book is a comprehensive reference source for students, professional engineers, and researchers interested in the application of computational methods for engineering design.

Mathematical Foundations For Signal Processing Communications And Networking

Author: Erchin Serpedin
Publisher: CRC Press
ISBN: 1439855145
Size: 49.38 MB
Format: PDF, ePub, Docs
View: 518
Download and Read
Mathematical Foundations for Signal Processing, Communications, and Networking describes mathematical concepts and results important in the design, analysis, and optimization of signal processing algorithms, modern communication systems, and networks. Helping readers master key techniques and comprehend the current research literature, the book offers a comprehensive overview of methods and applications from linear algebra, numerical analysis, statistics, probability, stochastic processes, and optimization. From basic transforms to Monte Carlo simulation to linear programming, the text covers a broad range of mathematical techniques essential to understanding the concepts and results in signal processing, telecommunications, and networking. Along with discussing mathematical theory, each self-contained chapter presents examples that illustrate the use of various mathematical concepts to solve different applications. Each chapter also includes a set of homework exercises and readings for additional study. This text helps readers understand fundamental and advanced results as well as recent research trends in the interrelated fields of signal processing, telecommunications, and networking. It provides all the necessary mathematical background to prepare students for more advanced courses and train specialists working in these areas.

Bayesian Signal Processing

Author: James V. Candy
Publisher: John Wiley & Sons
ISBN: 1119125472
Size: 45.48 MB
Format: PDF, Mobi
View: 2337
Download and Read
Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.

Simulation Based Econometric Methods

Author: Christian Gourieroux
Publisher: Oxford University Press
ISBN: 0198774753
Size: 16.22 MB
Format: PDF, ePub, Docs
View: 2609
Download and Read
High speed computing has enabled a new generation of statistical econometrics to become available. The simulation of problems that previously were too unwieldy to solve because of large integrals is now possible.

Bayesian Analysis For The Social Sciences

Author: Simon Jackman
Publisher: John Wiley & Sons
ISBN: 9780470686638
Size: 26.26 MB
Format: PDF, Kindle
View: 6132
Download and Read
Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.

Simulation Based Algorithms For Markov Decision Processes

Author: Hyeong Soo Chang
Publisher: Springer Science & Business Media
ISBN: 1447150228
Size: 13.83 MB
Format: PDF, Docs
View: 7583
Download and Read
Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable. In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel algorithms and their underpinning theories, and presents an updated account of the topics that have emerged since the publication of the first edition. Includes: innovative material on MDPs, both in constrained settings and with uncertain transition properties; game-theoretic method for solving MDPs; theories for developing roll-out based algorithms; and details of approximation stochastic annealing, a population-based on-line simulation-based algorithm. The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling, and control, and simulation but will be a valuable source of tuition and reference for students of control and operations research.