Download the linear algebra a beginning graduate student ought to know in pdf or read the linear algebra a beginning graduate student ought to know in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get the linear algebra a beginning graduate student ought to know in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

The Linear Algebra A Beginning Graduate Student Ought To Know

Author: Jonathan S. Golan
Publisher: Springer Science & Business Media
ISBN: 9400726368
Size: 19.41 MB
Format: PDF, ePub, Docs
View: 5572
Download and Read
Linear algebra is a living, active branch of mathematics which is central to almost all other areas of mathematics, both pure and applied, as well as to computer science, to the physical, biological, and social sciences, and to engineering. It encompasses an extensive corpus of theoretical results as well as a large and rapidly-growing body of computational techniques. Unfortunately, in the past decade, the content of linear algebra courses required to complete an undergraduate degree in mathematics has been depleted to the extent that they fail to provide a sufficient theoretical or computational background. Students are not only less able to formulate or even follow mathematical proofs, they are also less able to understand the mathematics of the numerical algorithms they need for applications. Certainly, the material presented in the average undergraduate course is insufficient for graduate study. This book is intended to fill the gap which has developed by providing enough theoretical and computational material to allow the advanced undergraduate or beginning graduate student to overcome this deficiency and be able to work independently or in advanced courses. The book is intended to be used either as a self-study guide, a textbook for a course in advanced linear algebra, or as a reference book. It is also designed to prepare a student for the linear algebra portion of prelim exams or PhD qualifying exams. The volume is self-contained to the extent that it does not assume any previous formal knowledge of linear algebra, though the reader is assumed to have been exposed, at least informally, to some of the basic ideas and techniques, such as manipulation of small matrices and the solution of small systems of linear equations over the real numbers. More importantly, it assumes a seriousness of purpose, considerable motivation, and a modicum of mathematical sophistication on the part of the reader. In the latest edition, new major theorems have been added, as well as many new examples. There are over 130 additional exercises and many of the previous exercises have been revised or rewritten. In addition, a large number of additional biographical notes and thumbnail portraits of mathematicians have been included.

Linear Algebra

Author: Fuzhen Zhang
Publisher: JHU Press
ISBN: 9780801854590
Size: 58.38 MB
Format: PDF, ePub
View: 4456
Download and Read
"Linear algebra is an increasingly important part of any curriculum in mathematics in our days... A well-organized problem book, like this, will surely be welcomed by students as well as by instructors." -- Zentralblatt fuer Mathematik

Basic Linear Algebra

Author: Thomas S. Blyth
Publisher: Springer Science & Business Media
ISBN: 1447134966
Size: 66.57 MB
Format: PDF, Docs
View: 5090
Download and Read
Basic Linear Algebra is a text for first year students, working from concrete examples towards abstract theorems, via tutorial-type exercises. The book explains the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations, and complex numbers. Linear equations are treated via Hermite normal forms, which provides a successful and concrete explanation of the notion of linear independence. Another highlight is the connection between linear mappings and matrices, leading to the change of basis theorem which opens the door to the notion of similarity. The authors are well known algebraists with considerable experience of teaching introductory courses on linear algebra to students at St Andrews. This book is based on one previously published by Chapman and Hall, but it has been extensively updated to include further explanatory text and fully worked solutions to the exercises that all 1st year students should be able to answer.

Linear Algebra In Action

Author: Harry Dym
Publisher: American Mathematical Soc.
ISBN: 1470409089
Size: 30.64 MB
Format: PDF
View: 3361
Download and Read
Linear algebra permeates mathematics, perhaps more so than any other single subject. It plays an essential role in pure and applied mathematics, statistics, computer science, and many aspects of physics and engineering. This book conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that many of us wish we had been taught as graduate students. Roughly the first third of the book covers the basic material of a first course in linear algebra. The remaining chapters are devoted to applications drawn from vector calculus, numerical analysis, control theory, complex analysis, convexity and functional analysis. In particular, fixed point theorems, extremal problems, matrix equations, zero location and eigenvalue location problems, and matrices with nonnegative entries are discussed. Appendices on useful facts from analysis and supplementary information from complex function theory are also provided for the convenience of the reader. In this new edition, most of the chapters in the first edition have been revised, some extensively. The revisions include changes in a number of proofs, either to simplify the argument, to make the logic clearer or, on occasion, to sharpen the result. New introductory sections on linear programming, extreme points for polyhedra and a Nevanlinna-Pick interpolation problem have been added, as have some very short introductory sections on the mathematics behind Google, Drazin inverses, band inverses and applications of SVD together with a number of new exercises.

Introduction To Tensor Analysis And The Calculus Of Moving Surfaces

Author: Pavel Grinfeld
Publisher: Springer Science & Business Media
ISBN: 1461478677
Size: 60.24 MB
Format: PDF, Mobi
View: 4681
Download and Read
This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.

The Linear Algebra A Beginning Graduate Student Ought To Know

Author: CTI Reviews
Publisher: Cram101 Textbook Reviews
ISBN: 146725388X
Size: 30.51 MB
Format: PDF, ePub, Docs
View: 4505
Download and Read
Facts101 is your complete guide to The Linear Algebra A Beginning Graduate Student Ought To Know. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

Numerical Analysis

Author: David Ronald Kincaid
Publisher: American Mathematical Soc.
ISBN: 0821847880
Size: 68.40 MB
Format: PDF, ePub
View: 7307
Download and Read
This book introduces students with diverse backgrounds to various types of mathematical analysis that are commonly needed in scientific computing. The subject of numerical analysis is treated from a mathematical point of view, offering a complete analysis of methods for scientific computing with appropriate motivations and careful proofs. In an engaging and informal style, the authors demonstrate that many computational procedures and intriguing questions of computer science arise from theorems and proofs. Algorithms are presented in pseudocode, so that students can immediately write computer programs in standard languages or use interactive mathematical software packages. This book occasionally touches upon more advanced topics that are not usually contained in standard textbooks at this level.

Advanced Linear Algebra

Author: Nicholas Loehr
Publisher: CRC Press
ISBN: 1466559012
Size: 17.93 MB
Format: PDF, ePub, Docs
View: 3274
Download and Read
Designed for advanced undergraduate and beginning graduate students in linear or abstract algebra, Advanced Linear Algebra covers theoretical aspects of the subject, along with examples, computations, and proofs. It explores a variety of advanced topics in linear algebra that highlight the rich interconnections of the subject to geometry, algebra, analysis, combinatorics, numerical computation, and many other areas of mathematics. The book’s 20 chapters are grouped into six main areas: algebraic structures, matrices, structured matrices, geometric aspects of linear algebra, modules, and multilinear algebra. The level of abstraction gradually increases as students proceed through the text, moving from matrices to vector spaces to modules. Each chapter consists of a mathematical vignette devoted to the development of one specific topic. Some chapters look at introductory material from a sophisticated or abstract viewpoint while others provide elementary expositions of more theoretical concepts. Several chapters offer unusual perspectives or novel treatments of standard results. Unlike similar advanced mathematical texts, this one minimizes the dependence of each chapter on material found in previous chapters so that students may immediately turn to the relevant chapter without first wading through pages of earlier material to access the necessary algebraic background and theorems. Chapter summaries contain a structured list of the principal definitions and results. End-of-chapter exercises aid students in digesting the material. Students are encouraged to use a computer algebra system to help solve computationally intensive exercises.

Lie Groups Lie Algebras And Representations

Author: Brian Hall
Publisher: Springer
ISBN: 3319134671
Size: 28.31 MB
Format: PDF
View: 5866
Download and Read
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette