Download the method of moments in electromagnetics in pdf or read the method of moments in electromagnetics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get the method of moments in electromagnetics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



The Method Of Moments In Electromagnetics Second Edition

Author: Walton C. Gibson
Publisher: CRC Press
ISBN: 1482235803
Size: 19.49 MB
Format: PDF, Mobi
View: 545
Download and Read
Now Covers Dielectric Materials in Practical Electromagnetic Devices The Method of Moments in Electromagnetics, Second Edition explains the solution of electromagnetic integral equations via the method of moments (MOM). While the first edition exclusively focused on integral equations for conducting problems, this edition extends the integral equation framework to treat objects having conducting as well as dielectric parts. New to the Second Edition Expanded treatment of coupled surface integral equations for conducting and composite conducting/dielectric objects, including objects having multiple dielectric regions with interfaces and junctions Updated topics to reflect current technology More material on the calculation of near fields Reformatted equations and improved figures Providing a bridge between theory and software implementation, the book incorporates sufficient background material and offers nuts-and-bolts implementation details. It first derives a generalized set of surface integral equations that can be used to treat problems with conducting and dielectric regions. Subsequent chapters solve these integral equations for progressively more difficult problems involving thin wires, bodies of revolution, and two- and three-dimensional bodies. After reading this book, students and researchers will be well equipped to understand more advanced MOM topics.

Field Computation By Moment Methods

Author: Roger F. Harrington
Publisher: Oxford University Press, USA
ISBN: 9780198592174
Size: 66.14 MB
Format: PDF, ePub
View: 261
Download and Read
This classic 1968 edition of Field Computation by Moment Methods is the first book to explore the computation of electromagnetic fields by the method of moments--the most popular method for the numerical solution of electromagnetic field problems. It presents a unified approach to moment methods by employing the concepts of linear spaces and functional analysis. Written especially for those who have a minimal amount of experience in electromagnetic theory, theoretical and mathematical are illustrated by examples that prepare all readers with the skills they need to apply the method of moments to new, engineering-related problems.

Numerical Electromagnetic Code Nec Method Of Moments A User Oriented Computer Code For Analysis Of The Electromagnetic Response Of Antennas And Other Metal Structures Part I Program Description Theory Part Ii Program Description Code Volume 1 Revised

Author: G. J. Burke
Publisher:
ISBN:
Size: 78.13 MB
Format: PDF, Kindle
View: 7683
Download and Read
The Numerical Electromagnetics Code (NEC-1) is a computer code for analyzing the electromagnetic response of an arbitrary structure consisting of wires and surfaces in free space or over a ground plane. The analysis is accomplished by the numerical solution of integral equations for induced currents. The excitation may be an incident plane wave or a voltage source on a wire while the output may include current and charge density, electric or magnetic field in the vicinity of the structure, and radiated fields. Hence, the code may be used for antenna analysis, EMP, or scattering studies. Part I of the document includes the equations on which the code is based and a discussion of the approximations and numerical methods used in the numerical solution. Some comparisons to demonstrate the range of accuracy of approximations are also included. A User's Guide is provided as part III. (Author).

Computational Electromagnetics For Rf And Microwave Engineering

Author: David B. Davidson
Publisher: Cambridge University Press
ISBN: 1139492810
Size: 42.27 MB
Format: PDF, ePub, Docs
View: 3765
Download and Read
This hands-on introduction to computational electromagnetics (CEM) links theoretical coverage of the three key methods - the FDTD, MoM and FEM - to open source MATLAB codes (freely available online) in 1D, 2D and 3D, together with many practical hints and tips gleaned from the author's 25 years of experience in the field. Updated and extensively revised, this second edition includes a new chapter on 1D FEM analysis, and extended 3D treatments of the FDTD, MoM and FEM, with entirely new 3D MATLAB codes. Coverage of higher-order finite elements in 1D, 2D and 3D is also provided, with supporting code, in addition to a detailed 1D example of the FDTD from a FEM perspective. With running examples through the book and end-of-chapter problems to aid understanding, this is ideal for professional engineers and senior undergraduate/graduate students who need to master CEM and avoid common pitfalls in writing code and using existing software.

Computational Electromagnetics With Matlab Fourth Edition

Author: Matthew N.O. Sadiku
Publisher: CRC Press
ISBN: 1351365088
Size: 36.66 MB
Format: PDF, ePub, Mobi
View: 3812
Download and Read
This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism.

Numerical Techniques In Electromagnetics Second Edition

Author: Matthew N.O. Sadiku
Publisher: CRC Press
ISBN: 9780849313950
Size: 74.55 MB
Format: PDF, Mobi
View: 6248
Download and Read
As the availability of powerful computer resources has grown over the last three decades, the art of computation of electromagnetic (EM) problems has also grown - exponentially. Despite this dramatic growth, however, the EM community lacked a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the reference of choice for thousands of engineers, researchers, and students. The Second Edition of this bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite difference time domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also added a chapter on the method of lines. Numerical Techniques in Electromagnetics continues to teach readers how to pose, numerically analyze, and solve EM problems, give them the ability to expand their problem-solving skills using a variety of methods, and prepare them for research in electromagnetism. Now the Second Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems.

Low Frequency Electromagnetic Modeling For Electrical And Biological Systems Using Matlab

Author: Sergey N. Makarov
Publisher: John Wiley & Sons
ISBN: 1119052564
Size: 12.11 MB
Format: PDF, Kindle
View: 5900
Download and Read
Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications. Sergey N. Makarov is a Professor in the Department of Electrical and Computer Engineering at Worcester Polytechnic Institute (WPI). Gregory M. Noetscher is a Senior Research Electrical Engineer at the U.S. Army Natick Soldier Research, Development and Engineering Center (NSRDEC) in Natick, MA. Ara Nazarian is an Assistant Professor of Orthopaedic Surgery, Harvard Medical School, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center (BIDMC).