Download the method of volume averaging theory and applications of transport in porous media in pdf or read the method of volume averaging theory and applications of transport in porous media in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get the method of volume averaging theory and applications of transport in porous media in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



The Method Of Volume Averaging

Author: S. Whitaker
Publisher: Springer Science & Business Media
ISBN: 9401733899
Size: 52.60 MB
Format: PDF, Kindle
View: 5408
Download and Read
Multiphase systems dominate nearly every area of science and technology, and the method of volume averaging provides a rigorous foundation for the analysis of these systems. The development is based on classical continuum physics, and it provides both the spatially smoothed equations and a method of predicting the effective transport coefficients that appear in those equations. The text is based on a ten-week graduate course that has been taught for more than 20 years at the University of California at Davis and at other universities around the world. Problems dealing with both the theoretical foundations and the applications are included with each chapter, and detailed solutions for all problems are available from the author. The course has attracted participants from chemical engineering, mechanical engineering, civil engineering, hydrologic science, mathematics, chemistry and physics.

Modeling Transport Phenomena In Porous Media With Applications

Author: Malay K. Das
Publisher: Springer
ISBN: 3319698664
Size: 79.83 MB
Format: PDF, ePub, Docs
View: 3296
Download and Read
This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.

Gas Transport In Porous Media

Author: Clifford K. Ho
Publisher: Springer Science & Business Media
ISBN: 140203962X
Size: 37.17 MB
Format: PDF, Docs
View: 2310
Download and Read
CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapors in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the “heat-pipe” exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems.

Percolation Models For Transport In Porous Media

Author: V.I. Selyakov
Publisher: Springer
ISBN: 0792343220
Size: 58.54 MB
Format: PDF, ePub, Mobi
View: 7560
Download and Read
It is an honour and pleasure to write a foreword to this useful and interesting book. Authors are very well known researchers who pioneered percolation modelling of transport in porous media in Russia from the early 80-th till nowadays. The main scope of the work presented in the book was developed when bright papers by A. Aharony, H.T. Davis, F.A.L. Dullien, A.A. Heiba, R.G. Larson, R. Lenormand, M.Sahimi, L.E. Scriven, D. Stauffer, M. Yanuka, Y.C.Yortsos were not available at the "other" side of the Iron Curtain. Nowadays hundreds of works and papers with the "percolation" keywords ap pear in petroleum and related applied research areas. The book will take a re markable place in the "petroleum percolation" bibliography. There are two important features of novelty in the monograph presented. First of all the authors developed a generalization of percolation clusters theory for grids with varying conductivity. Technique of representation of an infinite cluster as an hierarchial set of trees (so called r-chain model) allows to present conductivity of a stochastic grid in a closed form of explicit formulae. This method differs from those known in the West, such as effective media theory, solutions for the Bethe-lattice, etc. It has his own area of successful appli cations.

Computational Methods For Flow And Transport In Porous Media

Author: J.M. Crolet
Publisher: Springer Science & Business Media
ISBN: 9401711143
Size: 32.75 MB
Format: PDF
View: 3356
Download and Read
The first Symposium on Recent Advances in Problems of Flow and Transport in Porous Media was held in Marrakech in June '96 and has provided a focus for the utilization of computer methods for solving the many complex problems encountered in the field of solute transport in porous media. This symposium has been successful in bringing together scientists, physicists, hydrogeologists, researchers in soil and fluid mechanics and engineers involved in this multidisciplinary subject. It is clear that the utilization of computer-based models in this domain is still rapidly expanding and that new and novel solutions are being developed. The contributed papers which form this book reflect the recent advances, in particular with respect to new methods, inverse problems, reactive transport, unsaturated media and upscaling. These have been subdivided into the following sections: I. Numerical methods II. Mass transport and heat transfer III. Comparison with experimentation and simulation of real cases This book contains reviewed articles of the top presentations held during the International Symposium on Computer Methods in Porous Media Engineering which took place in Giens (France) in October 1998. All of the presentations and the optimism shown during the meeting provided further evidence that computer modeling is making remarkable progress and is indeed becoming an essential toolkit in the field of porous media and solute transport. I believe that the content of this book provides evidence of this and furthermore gives a comprehensive review of the theoretical developments and applications.

Engineering Turbulence Modelling And Experiments 6

Author: Wolfgang Rodi
Publisher: Elsevier
ISBN: 9780080530956
Size: 50.29 MB
Format: PDF, ePub
View: 1420
Download and Read
Proceedings of the world renowned ERCOFTAC (International Symposium on Engineering Turbulence Modelling and Measurements). The proceedings include papers dealing with the following areas of turbulence: · Eddy-viscosity and second-order RANS models · Direct and large-eddy simulations and deductions for conventional modelling · Measurement and visualization techniques, experimental studies · Turbulence control · Transition and effects of curvature, rotation and buoyancy on turbulence · Aero-acoustics · Heat and mass transfer and chemically reacting flows · Compressible flows, shock phenomena · Two-phase flows · Applications in aerospace engineering, turbomachinery and reciprocating engines, industrial aerodynamics and wind engineering, and selected chemical engineering problems Turbulence remains one of the key issues in tackling engineering flow problems. These problems are solved more and more by CFD analysis, the reliability of which depends strongly on the performance of the turbulence models employed. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation. As in other fields of Science, in the rapidly developing discipline of turbulence, swift progress can be achieved only by keeping up to date with recent advances all over the world and by exchanging ideas with colleagues active in related fields.

Fractured Vuggy Carbonate Reservoir Simulation

Author: Jun Yao
Publisher: Springer
ISBN: 3662550326
Size: 60.26 MB
Format: PDF, ePub
View: 2137
Download and Read
This book solves the open problems in fluid flow modeling through the fractured vuggy carbonate reservoirs. Fractured vuggy carbonate reservoirs usually have complex pore structures, which contain not only matrix and fractures but also the vugs and cavities. Since the vugs and cavities are irregular in shape and vary in diameter from millimeters to meters, modeling fluid flow through fractured vuggy porous media is still a challenge. The existing modeling theory and methods are not suitable for such reservoir. It starts from the concept of discrete fracture and fracture-vug networks model, and then develops the corresponding mathematical models and numerical methods, including discrete fracture model, discrete fracture-vug model, hybrid model and multiscale models. Based on these discrete porous media models, some equivalent medium models and methods are also discussed. All the modeling and methods shared in this book offer the key recent solutions into this area.

Macroscale Models Of Flow Through Highly Heterogeneous Porous Media

Author: M. Panfilov
Publisher: Springer Science & Business Media
ISBN: 9401595828
Size: 16.69 MB
Format: PDF, ePub, Mobi
View: 5254
Download and Read
The The book book was was planned planned in in such such a a manner manner that that two two basic basic goals goals would would be be reached. reached. On On the the one one hand, hand, the the goal goal was was to to show show some some new new results results in in the the field field of of modeling modeling transport transport through through highly highly heterogeneous heterogeneous media, media, based based on on the the homogenization homogenization theory. theory. Multiple Multiple new new mathematical mathematical models models of of transport transport are are presented presented herein, herein, studying studying their their properties, properties, developing developing methods methods to to compute compute effective effective parameters parameters of of the the averaged averaged media, media, simulation simulation of of cell cell problems, problems, using using new new models models to to simulate simulate some some practical practical problems. problems. High High heterogeneity heterogeneity being being subjected subjected to to the the homogenization homogenization procedure, procedure, generates generates non-local non-local phenomena phenomena and and then then gives gives a a possibility possibility to to develop develop a a new, new, non-local non-local (or (or "dynamic"), "dynamic"), theory theory of of transport transport in in porous porous media. media.

Porous Media

Author: Kambiz Vafai
Publisher: CRC Press
ISBN: 9781420065428
Size: 62.81 MB
Format: PDF, Docs
View: 4454
Download and Read
Presenting state-of-the-art research advancements, Porous Media: Applications in Biological Systems and Biotechnology explores innovative approaches to effectively apply existing porous media technologies to biomedical applications. In each peer-reviewed chapter, world-class scientists and engineers collaborate to address significant problems and discuss exciting research in biological systems. The book begins with discussions on bioheat transfer equations for blood flows and surrounding biological tissue, the concept of electroporation, hydrodynamic modeling of tissue-engineered material, and the resistance of microbial biofilms to common modalities of antibiotic treatments. It examines how biofilms influence porous media hydrodynamics, describes the modeling of flow changes in cerebral aneurysms, and highlights recent advances in Lagrangian particles methods. The text also covers passive mass transport processes in cellular membranes and their biophysical implications, the modeling and treatment of mass transport through skin, the use of porous media in marine microbiology, the transport of large biological molecules in deforming tissues, and applications of magnetic stabilized beds for protein purification and adsorption, antibody removal, and more. The final chapters present potential in situ characterization techniques for studying porous media and conductive membranes and explain the development of bioconvection patterns generated by populations of gravitactic microorganisms in porous media. Using a common nomenclature throughout and with contributions from top experts, this cohesive book illustrates the role of porous media in addressing some of the most challenging issues in biomedical engineering and biotechnology. The book contains sophisticated porous media models that can be used to improve the accuracy of modeling a variety of biological processes.

Comprehensive Biomaterials

Author: Paul Ducheyne
Publisher: Elsevier
ISBN: 0080552943
Size: 75.67 MB
Format: PDF, ePub, Docs
View: 7167
Download and Read
Comprehensive Biomaterials brings together the myriad facets of biomaterials into one, major series of six edited volumes that would cover the field of biomaterials in a major, extensive fashion: Volume 1: Metallic, Ceramic and Polymeric Biomaterials Volume 2: Biologically Inspired and Biomolecular Materials Volume 3: Methods of Analysis Volume 4: Biocompatibility, Surface Engineering, and Delivery Of Drugs, Genes and Other Molecules Volume 5: Tissue and Organ Engineering Volume 6: Biomaterials and Clinical Use Experts from around the world in hundreds of related biomaterials areas have contributed to this publication, resulting in a continuum of rich information appropriate for many audiences. The work addresses the current status of nearly all biomaterials in the field, their strengths and weaknesses, their future prospects, appropriate analytical methods and testing, device applications and performance, emerging candidate materials as competitors and disruptive technologies, and strategic insights for those entering and operational in diverse biomaterials applications, research and development, regulatory management, and commercial aspects. From the outset, the goal was to review materials in the context of medical devices and tissue properties, biocompatibility and surface analysis, tissue engineering and controlled release. It was also the intent both, to focus on material properties from the perspectives of therapeutic and diagnostic use, and to address questions relevant to state-of-the-art research endeavors. Reviews the current status of nearly all biomaterials in the field by analyzing their strengths and weaknesses, performance as well as future prospects Presents appropriate analytical methods and testing procedures in addition to potential device applications Provides strategic insights for those working on diverse application areas such as R&D, regulatory management, and commercial development