Download theoretical foundations of functional data analysis with an introduction to linear operators in pdf or read theoretical foundations of functional data analysis with an introduction to linear operators in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get theoretical foundations of functional data analysis with an introduction to linear operators in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Theoretical Foundations Of Functional Data Analysis With An Introduction To Linear Operators

Author: Tailen Hsing
Publisher: John Wiley & Sons
ISBN: 0470016914
Size: 44.55 MB
Format: PDF, ePub
View: 3740
Download and Read
Functional data is data in the form of curves that is becoming a popular method for interpreting scientific data. Statistical Analysis of Functional Data provides an authoritative account of function data analysis covering its foundations, theory, methodology, and practical implementation. It also contains examples taken from a wide range of disciplines, including finance, medicine, and psychology. The book includes a supporting Web site hosting the real data sets analyzed in the book and related software. Statistical researchers or practitioners analyzing functional data will find this book useful.

Theoretical Foundations Of Functional Data Analysis With An Introduction To Linear Operators

Author: Tailen Hsing
Publisher: John Wiley & Sons
ISBN: 1118762576
Size: 39.41 MB
Format: PDF
View: 5363
Download and Read
Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.

Theoretical Foundations Of Functional Data Analysis With An Introduction To Linear Operators

Author: Tailen Hsing
Publisher: John Wiley & Sons
ISBN: 1118762568
Size: 18.18 MB
Format: PDF, Kindle
View: 7095
Download and Read
Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.

Inference For Functional Data With Applications

Author: Lajos Horváth
Publisher: Springer Science & Business Media
ISBN: 1461436559
Size: 59.98 MB
Format: PDF, Mobi
View: 3568
Download and Read
This book presents recently developed statistical methods and theory required for the application of the tools of functional data analysis to problems arising in geosciences, finance, economics and biology. It is concerned with inference based on second order statistics, especially those related to the functional principal component analysis. While it covers inference for independent and identically distributed functional data, its distinguishing feature is an in depth coverage of dependent functional data structures, including functional time series and spatially indexed functions. Specific inferential problems studied include two sample inference, change point analysis, tests for dependence in data and model residuals and functional prediction. All procedures are described algorithmically, illustrated on simulated and real data sets, and supported by a complete asymptotic theory. The book can be read at two levels. Readers interested primarily in methodology will find detailed descriptions of the methods and examples of their application. Researchers interested also in mathematical foundations will find carefully developed theory. The organization of the chapters makes it easy for the reader to choose an appropriate focus. The book introduces the requisite, and frequently used, Hilbert space formalism in a systematic manner. This will be useful to graduate or advanced undergraduate students seeking a self-contained introduction to the subject. Advanced researchers will find novel asymptotic arguments.

Analysis Of Variance For Functional Data

Author: Jin-Ting Zhang
Publisher: CRC Press
ISBN: 1439862745
Size: 34.27 MB
Format: PDF, Mobi
View: 6469
Download and Read
Despite research interest in functional data analysis in the last three decades, few books are available on the subject. Filling this gap, Analysis of Variance for Functional Data presents up-to-date hypothesis testing methods for functional data analysis. The book covers the reconstruction of functional observations, functional ANOVA, functional linear models with functional responses, ill-conditioned functional linear models, diagnostics of functional observations, heteroscedastic ANOVA for functional data, and testing equality of covariance functions. Although the methodologies presented are designed for curve data, they can be extended to surface data. Useful for statistical researchers and practitioners analyzing functional data, this self-contained book gives both a theoretical and applied treatment of functional data analysis supported by easy-to-use MATLAB® code. The author provides a number of simple methods for functional hypothesis testing. He discusses pointwise, L2-norm-based, F-type, and bootstrap tests. Assuming only basic knowledge of statistics, calculus, and matrix algebra, the book explains the key ideas at a relatively low technical level using real data examples. Each chapter also includes bibliographical notes and exercises. Real functional data sets from the text and MATLAB codes for analyzing the data examples are available for download from the author’s website.

Introduction To Functional Data Analysis

Author: Piotr Kokoszka
Publisher: CRC Press
ISBN: 1498746691
Size: 60.55 MB
Format: PDF, ePub, Docs
View: 4409
Download and Read
Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.

Theory Of Linear Operations

Author: S. Banach
Publisher: Elsevier
ISBN: 9780080887203
Size: 35.18 MB
Format: PDF, ePub, Docs
View: 6961
Download and Read
This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra. The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series. A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'') complements this important monograph.

Functional And Shape Data Analysis

Author: Anuj Srivastava
Publisher: Springer
ISBN: 1493940201
Size: 40.38 MB
Format: PDF
View: 6631
Download and Read
This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling future scientific challenges. Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves—in one, two, and higher dimensions—both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.

Linear Operator Theory In Engineering And Science

Author: Arch W. Naylor
Publisher: Springer Science & Business Media
ISBN: 9780387950013
Size: 42.46 MB
Format: PDF, ePub, Mobi
View: 7174
Download and Read
This book is a unique introduction to the theory of linear operators on Hilbert space. The authors' goal is to present the basic facts of functional analysis in a form suitable for engineers, scientists, and applied mathematicians. Although the Definition-Theorem-Proof format of mathematics is used, careful attention is given to motivation of the material covered and many illustrative examples are presented. First published in 1971, Linear Operator in Engineering and Sciences has since proved to be a popular and very useful textbook.