Download turing computability theory and applications theory and applications of computability in pdf or read turing computability theory and applications theory and applications of computability in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get turing computability theory and applications theory and applications of computability in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Turing Computability

Author: Robert I. Soare
Publisher: Springer
ISBN: 3642319335
Size: 75.81 MB
Format: PDF
View: 4087
Download and Read
Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.

Automata Computability And Complexity

Author: Elaine Rich
Publisher: Prentice Hall
ISBN: 0132288060
Size: 64.45 MB
Format: PDF
View: 2025
Download and Read
The theoretical underpinnings of computing form a standard part of almost every computer science curriculum. But the classic treatment of this material isolates it from the myriad ways in which the theory influences the design of modern hardware and software systems. The goal of this book is to change that. The book is organized into a core set of chapters (that cover the standard material suggested by the title), followed by a set of appendix chapters that highlight application areas including programming language design, compilers, software verification, networks, security, natural language processing, artificial intelligence, game playing, and computational biology. The core material includes discussions of finite state machines, Markov models, hidden Markov models (HMMs), regular expressions, context-free grammars, pushdown automata, Chomsky and Greibach normal forms, context-free parsing, pumping theorems for regular and context-free languages, closure theorems and decision procedures for regular and context-free languages, Turing machines, nondeterminism, decidability and undecidability, the Church-Turing thesis, reduction proofs, Post Correspondence problem, tiling problems, the undecidability of first-order logic, asymptotic dominance, time and space complexity, the Cook-Levin theorem, NP-completeness, Savitch's Theorem, time and space hierarchy theorems, randomized algorithms and heuristic search. Throughout the discussion of these topics there are pointers into the application chapters. So, for example, the chapter that describes reduction proofs of undecidability has a link to the security chapter, which shows a reduction proof of the undecidability of the safety of a simple protection framework.

The Incomputable

Author: S. Barry Cooper
Publisher: Springer
ISBN: 3319436694
Size: 49.16 MB
Format: PDF, Mobi
View: 7403
Download and Read
This book questions the relevance of computation to the physical universe. Our theories deliver computational descriptions, but the gaps and discontinuities in our grasp suggest a need for continued discourse between researchers from different disciplines, and this book is unique in its focus on the mathematical theory of incomputability and its relevance for the real world. The core of the book consists of thirteen chapters in five parts on extended models of computation; the search for natural examples of incomputable objects; mind, matter, and computation; the nature of information, complexity, and randomness; and the mathematics of emergence and morphogenesis. This book will be of interest to researchers in the areas of theoretical computer science, mathematical logic, and philosophy.

Algorithmic Randomness And Complexity

Author: Rodney G. Downey
Publisher: Springer Science & Business Media
ISBN: 0387684417
Size: 76.72 MB
Format: PDF, Kindle
View: 2491
Download and Read
Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of "algorithmic randomness" and complexity for scientists from diverse fields.

Computability Theory

Author: Rebecca Weber
Publisher: American Mathematical Soc.
ISBN: 082187392X
Size: 36.56 MB
Format: PDF, ePub, Docs
View: 7248
Download and Read
What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, examples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.

Computability Theory And Applications

Author: Robert I. Soare
Publisher: Springer
ISBN: 9783642319327
Size: 43.84 MB
Format: PDF, ePub, Docs
View: 2739
Download and Read
This book emphasizes three very important concepts: computability, as opposed to recursion or induction; classical computability, i.e., algorithmic functions on certain countable structures in the original sense of Turing and Post; and the art of computability, i.e., a skill to be practiced, but also important an esthetic sense of beauty and taste in mathematics.

Computability Theory

Author: S. Barry Cooper
Publisher: CRC Press
ISBN: 9781584882374
Size: 80.63 MB
Format: PDF, Kindle
View: 2284
Download and Read
Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The book includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable and lively way.

Computability Theory

Author: Herbert B. Enderton
Publisher: Academic Press
ISBN: 9780123849595
Size: 14.74 MB
Format: PDF, Kindle
View: 2088
Download and Read
Computability Theory: An Introduction to Recursion Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The text includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable way. Frequent historical information presented throughout More extensive motivation for each of the topics than other texts currently available Connects with topics not included in other textbooks, such as complexity theory

Higher Order Computability

Author: John Longley
Publisher: Springer
ISBN: 3662479923
Size: 42.51 MB
Format: PDF, ePub, Docs
View: 5503
Download and Read
This book offers a self-contained exposition of the theory of computability in a higher-order context, where 'computable operations' may themselves be passed as arguments to other computable operations. The subject originated in the 1950s with the work of Kleene, Kreisel and others, and has since expanded in many different directions under the influence of workers from both mathematical logic and computer science. The ideas of higher-order computability have proved valuable both for elucidating the constructive content of logical systems, and for investigating the expressive power of various higher-order programming languages. In contrast to the well-known situation for first-order functions, it turns out that at higher types there are several different notions of computability competing for our attention, and each of these has given rise to its own strand of research. In this book, the authors offer an integrated treatment that draws together many of these strands within a unifying framework, revealing not only the range of possible computability concepts but the relationships between them. The book will serve as an ideal introduction to the field for beginning graduate students, as well as a reference for advanced researchers

The Foundations Of Computability Theory

Author: Borut Robič
Publisher: Springer
ISBN: 3662448084
Size: 51.66 MB
Format: PDF
View: 1251
Download and Read
This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism; in Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability; in Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science.