Download ultrafast optics wiley series in pure and applied optics in pdf or read ultrafast optics wiley series in pure and applied optics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get ultrafast optics wiley series in pure and applied optics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Ultrafast Optics

Author: Andrew Weiner
Publisher: John Wiley & Sons
ISBN: 1118211472
Size: 72.74 MB
Format: PDF, ePub, Mobi
View: 3931
Download and Read
A comprehensive treatment of ultrafast optics This book fills the need for a thorough and detailed account of ultrafast optics. Written by one of the most preeminent researchers in the field, it sheds new light on technology that has already had a revolutionary impact on precision frequency metrology, high-speed electrical testing, biomedical imaging, and in revealing the initial steps in chemical reactions. Ultrafast Optics begins with a summary of ultrashort laser pulses and their practical applications in a range of real-world settings. Next, it reviews important background material, including an introduction to Fourier series and Fourier transforms, and goes on to cover: Principles of mode-locking Ultrafast pulse measurement methods Dispersion and dispersion compensation Ultrafast nonlinear optics: second order Ultrafast nonlinear optics: third order Mode-locking: selected advanced topics Manipulation of ultrashort pulses Ultrafast time-resolved spectroscopy Terahertz time-domain electromagnetics Professor Weiner's expertise and cutting-edge research result in a book that is destined to become a seminal text for engineers, researchers, and graduate students alike.

Fundamentals Of Photonics

Author: Bahaa E. A. Saleh
Publisher: Wiley-Interscience
ISBN:
Size: 41.28 MB
Format: PDF, Docs
View: 7388
Download and Read
Now in a new full-color edition, Fundamentals of Photonics, Second Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of photons and atoms, and semiconductor optics. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, guided-wave and fiber optics, semiconductor sources and detectors, electro-optic and acousto-optic devices, nonlinear optical devices, optical interconnects and switches, and optical fiber communications. Each of the twenty-two chapters of the first edition has been thoroughly updated. The Second Edition also features entirely new chapters on photonic-crystal optics (including multilayer and periodic media, waveguides, holey fibers, and resonators) and ultrafast optics (including femtosecond optical pulses, ultrafast nonlinear optics, and optical solitons). The chapters on optical interconnects and switches and optical fiber communications have been completely rewritten to accommodate current technology. Each chapter contains summaries, highlighted equations, exercises, problems, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest.

Nonlinear Optics

Author: George I. Stegeman
Publisher: John Wiley & Sons
ISBN: 1118266129
Size: 41.85 MB
Format: PDF, Mobi
View: 5337
Download and Read
Clear, integrated coverage of all aspects of nonlinear optics—phenomena, materials, and devices Coauthored by George Stegeman, one of the most highly respected pioneers of nonlinear optics—with contributions on applications from Robert Stegeman—this book covers nonlinear optics from a combined physics, optics, materials science, and devices perspective. It offers a thoroughly balanced treatment of concepts, nonlinear materials, practical aspects of nonlinear devices, and current application areas. Beginning with the presentation of a simple electron on a spring model—to help readers make the leap from concepts to applications—Nonlinear Optics gives comprehensive explanations of second-order phenomena, derivation of nonlinear susceptibilities, third-order nonlinear effects, multi-wave mixing, scattering, and more. Coverage includes: Nonlinear response of materials at the molecular level Second-order nonlinear devices, their optimization and limitations The physical origins of second- and third-order nonlinearities Typical frequency dispersion of nonlinearities, explained in terms of simple two- and three-level models Ultrafast and ultrahigh intensity processes Practice problems demonstrating the design of such nonlinear devices as frequency doublers and optical oscillators Based on more than twenty years of lectures at the College of Optics and Photonics (CREOL) at the University of Central Florida, Nonlinear Optics introduces all topics from the ground up, making the material easily accessible not only for physicists, but also for chemists and materials scientists, as well as professionals in diverse areas of optics, from laser physics to electrical engineering.

Photonic Crystals Theory Applications And Fabrication

Author: Dennis W Prather
Publisher: John Wiley & Sons
ISBN: 047027803X
Size: 59.74 MB
Format: PDF, Kindle
View: 213
Download and Read
"This book presents in detail the fundamental theoretical background necessary to understand the unique optical phenomena arising from the crystalline nature of photonic-crystal structures and their application across a range of disciplines. The book is organized to take readers from basic concepts to more advanced topics." "The authors assume an elementary knowledge of electromagnetism, vector calculus, Fourier analysis, and complex number analysis. Therefore, the book is appropriate for advanced undergraduate students in physics, applied physics, optics, electronics, and chemical and electrical engineering, as well as graduate students and researchers in these fields."--Jacket.

Engineering Optics

Author: Keigo Iizuka
Publisher: Springer Science & Business Media
ISBN: 0387757236
Size: 55.51 MB
Format: PDF, Docs
View: 6391
Download and Read
Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

Crc Handbook Of Laser Science And Technology Supplement 2

Author: Marvin J. Weber
Publisher: CRC Press
ISBN: 9780849335075
Size: 12.78 MB
Format: PDF, ePub
View: 2069
Download and Read
In the CRC Handbook of Laser Science and Technology: Supplement 2, experts summarize the discovery and properties of new optical materials that have appeared since the publication of Volumes III-V. Included are the latest advances in optical crystals, glasses and plastics, laser host materials, phase conjugation materials, linear electrooptic materials, nonlinear optical materials, magnetooptic materials, elastooptic materials, photorefractive materials, liquid crystals, and thin film coatings. The book also includes expanded coverage of optical waveguide materials and new sections on optical liquids, glass fiber lasers, diamond optics, and gradient index materials. Appendices include Designation of Russian Optical Glasses; Abbreviations, Acronyms, and Mineralogical or Common Names for Optical Materials; and Abbreviations for Methods of Preparing Optical Materials. Extensive tabulations of materials properties with references to the primary literature are provided throughout the supplement. The CRC Handbook of Laser Science and Technology: Supplement 2 represents the latest volume in the most comprehensive, up-to-date listing of the properties of optical materials for lasers and laser systems, making it an essential reference work for all scientists and engineers working in laser research and development.

Fundamentals Of Nonlinear Optics Second Edition

Author: Peter E. Powers
Publisher: CRC Press
ISBN: 1498736866
Size: 78.43 MB
Format: PDF, Mobi
View: 4096
Download and Read
Praise for the 1st Edition: "well written and up to date.... The problem sets at the end of each chapter reinforce and enhance the material presented, and may give students confidence in handling real-world problems." ?Optics & Photonics News "rigorous but simple description of a difficult field keeps the reader’s attention throughout.... serves perfectly for an introductory-level course." ?Physics Today This fully revised introduction enables the reader to understand and use the basic principles related to many phenomena in nonlinear optics and provides the mathematical tools necessary to solve application-relevant problems. The book is a pedagogical guide aimed at a diverse audience including engineers, physicists, and chemists who want a tiered approach to understanding nonlinear optics. The material is augmented by numerous problems, with many requiring the reader to perform real-world calculations for a range of fields, from optical communications to remote sensing and quantum information. Analytical solutions of equations are covered in detail and numerical approaches to solving problems are explained and demonstrated. The second edition expands the earlier treatment and includes: A new chapter on quantum nonlinear optics. Thorough treatment of parametric optical processes covering birefringence, tolerances and beam optimization to design and build high conversion efficiency devices. Treatment of numerical methods to solving sets of complex nonlinear equations. Many problems in each chapter to challenge reader comprehension. Extended treatment of four-wave mixing and solitons. Coverage of ultrafast pulse propagation including walk-off effects.

Introduction To Nonlinear Optics

Author: Geoffrey New
Publisher: Cambridge University Press
ISBN: 1139500767
Size: 36.13 MB
Format: PDF, Docs
View: 5041
Download and Read
Since the early days of nonlinear optics in the 1960s, the field has expanded dramatically, and is now a vast and vibrant field with countless technological applications. Providing a gentle introduction to the principles of the subject, this textbook is ideal for graduate students starting their research in this exciting area. After basic ideas have been outlined, the book offers a thorough analysis of second harmonic generation and related second-order processes, before moving on to third-order effects, the nonlinear optics of short optical pulses and coherent effects such as electromagnetically-induced transparency. A simplified treatment of high harmonic generation is presented at the end. More advanced topics, such as the linear and nonlinear optics of crystals, the tensor nature of the nonlinear coefficients and their quantum mechanical representation, are confined to specialist chapters so that readers can focus on basic principles before tackling these more difficult aspects of the subject.

Applied Nonlinear Optics

Author: Frits Zernike
Publisher: Courier Corporation
ISBN: 048645360X
Size: 73.85 MB
Format: PDF, Mobi
View: 674
Download and Read
Directed toward physicists and engineers interested in the device applications enabled by nonlinear optics, this text is suitable for advanced undergraduates and graduate students. Its content is presented entirely on a classical basis and requires only an elementary knowledge of quantum mechanics. The authors demonstrate how real laboratory situations can diverge from ideal theory, acquainting readers with the kinds of problems common to construction of a nonlinear device. They also offer a detailed discussion of the practical problems and characteristics of nonlinear materials, as well as the selection procedures necessary to ensure the use of good material. Their treatment begins with an introduction to the theories of linear and nonlinear optics, along with the basic ideas behind them. Succeeding chapters explore phase matching and nonlinear materials, followed by detailed treatments of second-harmonic generation, parametric up-conversion, and optical parametric amplification and oscillation. Appendixes offer a comprehensive list of materials and their properties; the text concludes with references and an index.