Download uncertainty quantification and stochastic modeling with matlab in pdf or read uncertainty quantification and stochastic modeling with matlab in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get uncertainty quantification and stochastic modeling with matlab in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Uncertainty Quantification And Stochastic Modeling With Matlab

Author: Eduardo Souza de Cursi
Publisher: Elsevier
ISBN: 0081004710
Size: 27.71 MB
Format: PDF, Kindle
View: 2423
Download and Read
Uncertainty Quantification (UQ) is a relatively new research area which describes the methods and approaches used to supply quantitative descriptions of the effects of uncertainty, variability and errors in simulation problems and models. It is rapidly becoming a field of increasing importance, with many real-world applications within statistics, mathematics, probability and engineering, but also within the natural sciences. Literature on the topic has up until now been largely based on polynomial chaos, which raises difficulties when considering different types of approximation and does not lead to a unified presentation of the methods. Moreover, this description does not consider either deterministic problems or infinite dimensional ones. This book gives a unified, practical and comprehensive presentation of the main techniques used for the characterization of the effect of uncertainty on numerical models and on their exploitation in numerical problems. In particular, applications to linear and nonlinear systems of equations, differential equations, optimization and reliability are presented. Applications of stochastic methods to deal with deterministic numerical problems are also discussed. Matlab® illustrates the implementation of these methods and makes the book suitable as a textbook and for self-study. Discusses the main ideas of Stochastic Modeling and Uncertainty Quantification using Functional Analysis Details listings of Matlab® programs implementing the main methods which complete the methodological presentation by a practical implementation Construct your own implementations from provided worked examples

Introduction To Uncertainty Quantification

Author: T.J. Sullivan
Publisher: Springer
ISBN: 3319233955
Size: 47.48 MB
Format: PDF
View: 2914
Download and Read
This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.

Uncertainty Quantification

Author: Ralph C. Smith
Publisher: SIAM
ISBN: 161197321X
Size: 74.49 MB
Format: PDF
View: 6260
Download and Read
The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.

An Introduction To Computational Stochastic Pdes

Author: Gabriel J. Lord
Publisher: Cambridge University Press
ISBN: 1139915770
Size: 26.37 MB
Format: PDF, Kindle
View: 4559
Download and Read
This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of-the-art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modelling and materials science.

Handbook Of Uncertainty Quantification

Author: Roger Ghanem
Publisher: Springer
ISBN: 9783319123844
Size: 65.48 MB
Format: PDF, ePub, Mobi
View: 2078
Download and Read
The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.

Variational Methods For Engineers With Matlab

Author: Eduardo Souza de Cursi
Publisher: John Wiley & Sons
ISBN: 1848219148
Size: 72.76 MB
Format: PDF, ePub, Mobi
View: 2151
Download and Read
This book is issued from a 30 years’ experience on the presentation of variational methods to successive generations of students and researchers in Engineering. It gives a comprehensive, pedagogical and engineer-oriented presentation of the foundations of variational methods and of their use in numerical problems of Engineering. Particular applications to linear and nonlinear systems of equations, differential equations, optimization and control are presented. MATLAB programs illustrate the implementation and make the book suitable as a textbook and for self-study. The evolution of knowledge, of the engineering studies and of the society in general has led to a change of focus from students and researchers. New generations of students and researchers do not have the same relations to mathematics as the previous ones. In the particular case of variational methods, the presentations used in the past are not adapted to the previous knowledge, the language and the centers of interest of the new generations. Since these methods remain a core knowledge – thus essential - in many fields (Physics, Engineering, Applied Mathematics, Economics, Image analysis …), a new presentation is necessary in order to address variational methods to the actual context.

Model Calibration And Parameter Estimation

Author: Ne-Zheng Sun
Publisher: Springer
ISBN: 1493923234
Size: 24.15 MB
Format: PDF, ePub, Docs
View: 7003
Download and Read
This three-part book provides a comprehensive and systematic introduction to these challenging topics such as model calibration, parameter estimation, reliability assessment, and data collection design. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hyperparameter estimation, and model dimension reduction, and Part 3 considers how to collect data and construct reliable models for prediction and decision-making. For the first time, topics such as multiscale inversion, stochastic field parameterization, level set method, machine learning, global sensitivity analysis, data assimilation, model uncertainty quantification, robust design, and goal-oriented modeling, are systematically described and summarized in a single book from the perspective of model inversion, and elucidated with numerical examples from environmental and water resources modeling. Readers of this book will not only learn basic concepts and methods for simple parameter estimation, but also get familiar with advanced methods for modeling complex systems. Algorithms for mathematical tools used in this book, such as numerical optimization, automatic differentiation, adaptive parameterization, hierarchical Bayesian, metamodeling, Markov chain Monte Carlo, are covered in details. This book can be used as a reference for graduate and upper level undergraduate students majoring in environmental engineering, hydrology, and geosciences. It also serves as an essential reference book for professionals such as petroleum engineers, mining engineers, chemists, mechanical engineers, biologists, biology and medical engineering, applied mathematicians, and others who perform mathematical modeling.

Advances In Modeling And Simulation

Author: Andreas Tolk
Publisher: Springer
ISBN: 3319641824
Size: 63.53 MB
Format: PDF, Kindle
View: 6506
Download and Read
​This broad-ranging text/reference presents a fascinating review of the state of the art of modeling and simulation, highlighting both the seminal work of preeminent authorities and exciting developments from promising young researchers in the field. Celebrating the 50th anniversary of the Winter Simulation Conference (WSC), the premier international forum for disseminating recent advances in the field of system simulation, the book showcases the historical importance of this influential conference while also looking forward to a bright future for the simulation community. Topics and features: examines the challenge of constructing valid and efficient models, emphasizing the benefits of the process of simulation modeling; discusses model calibration, input model risk, and approaches to validating emergent behaviors in large-scale complex systems with non-linear interactions; reviews the evolution of simulation languages, and the history of the Time Warp algorithm; offers a focus on the design and analysis of simulation experiments under various goals, and describes how data can be “farmed” to support decision making; provides a comprehensive overview of Bayesian belief models for simulation-based decision making, and introduces a model for ranking and selection in cloud computing; highlights how input model uncertainty impacts simulation optimization, and proposes an approach to quantify and control the impact of input model risk; surveys the applications of simulation in semiconductor manufacturing, in social and behavioral modeling, and in military planning and training; presents data analysis on the publications from the Winter Simulation Conference, offering a big-data perspective on the significant impact of the conference. This informative and inspiring volume will appeal to all academics and professionals interested in computational and mathematical modeling and simulation, as well as to graduate students on the path to form the next generation of WSC pioneers.

Variational Methods For Engineers With Matlab

Author: Eduardo Souza de Cursi
Publisher: John Wiley & Sons
ISBN: 1119230152
Size: 59.90 MB
Format: PDF, ePub, Mobi
View: 5216
Download and Read
This book is issued from a 30 years’ experience on the presentation of variational methods to successive generations of students and researchers in Engineering. It gives a comprehensive, pedagogical and engineer-oriented presentation of the foundations of variational methods and of their use in numerical problems of Engineering. Particular applications to linear and nonlinear systems of equations, differential equations, optimization and control are presented. MATLAB programs illustrate the implementation and make the book suitable as a textbook and for self-study. The evolution of knowledge, of the engineering studies and of the society in general has led to a change of focus from students and researchers. New generations of students and researchers do not have the same relations to mathematics as the previous ones. In the particular case of variational methods, the presentations used in the past are not adapted to the previous knowledge, the language and the centers of interest of the new generations. Since these methods remain a core knowledge – thus essential - in many fields (Physics, Engineering, Applied Mathematics, Economics, Image analysis …), a new presentation is necessary in order to address variational methods to the actual context.

Introduction To Derivative Free Optimization

Author: Andrew R. Conn
Publisher: SIAM
ISBN: 0898716683
Size: 43.45 MB
Format: PDF, Kindle
View: 1981
Download and Read
The first contemporary comprehensive treatment of optimization without derivatives. This text explains how sampling and model techniques are used in derivative-free methods and how they are designed to solve optimization problems. It is designed to be readily accessible to both researchers and those with a modest background in computational mathematics.