Download variational methods with applications to science and engineering in pdf or read variational methods with applications to science and engineering in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get variational methods with applications to science and engineering in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Variational Methods In Mathematics Science And Engineering

Author: Karel Rektorys
Publisher: Springer Science & Business Media
ISBN: 9401164509
Size: 26.30 MB
Format: PDF, Docs
View: 5987
Download and Read
The impulse which led to the writing of the present book has emerged from my many years of lecturing in special courses for selected students at the College of Civil Engineering of the Tech nical University in Prague, from experience gained as supervisor and consultant to graduate students-engineers in the field of applied mathematics, and - last but not least - from frequent consultations with technicians as well as with physicists who have asked for advice in overcoming difficulties encountered in solving theoretical problems. Even though a varied combination of problems of the most diverse nature was often in question, the problems discussed in this book stood forth as the most essential to this category of specialists. The many discussions I have had gave rise to considerations on writing a book which should fill the rather unfortunate gap in our literature. The book is designed, in the first place, for specialists in the fields of theoretical engineering and science. However, it was my aim that the book should be of interest to mathematicians as well. I have been well aware what an ungrateful task it may be to write a book of the present type, and what problems such an effort can bring: Technicians and physicists on the one side, and mathematicians on the other, are often of diametrically opposing opinions as far as books con ceived for both these categories are concerned.

Duality Principles In Nonconvex Systems

Author: David Yang Gao
Publisher: Springer Science & Business Media
ISBN: 9780792361459
Size: 56.48 MB
Format: PDF, ePub, Docs
View: 6431
Download and Read
Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical systems. A potentially powerful sequential canonical dual transformation method for solving fully nonlinear problems is developed heuristically and illustrated by use of many interesting examples as well as extensive applications in a wide variety of nonlinear systems, including differential equations, variational problems and inequalities, constrained global optimization, multi-well phase transitions, non-smooth post-bifurcation, large deformation mechanics, structural limit analysis, differential geometry and non-convex dynamical systems. With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis. Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can also be recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.

Variational Methods In Nuclear Reactor Physics

Author: Weston M. Jr. Stacey
Publisher: Elsevier
ISBN: 0323160433
Size: 44.12 MB
Format: PDF, ePub, Mobi
View: 7710
Download and Read
Nuclear Science and Technology, Volume 10: Variational Methods in Nuclear Reactor Physics presents the mathematical methods of a variational origin that are useful in obtaining approximate solutions to science and engineering problems. This book is composed of five chapters and begins with a discussion on the variation principles for physical systems described by both inhomogeneous and homogeneous equations to develop a generalized perturbation theory. Chapter 2 deals with the applications of variational estimates and generalized perturbation theory to neutron transport problems. Chapter 3 covers the variation principles of the Lagrangian form that are constructed for a general, linear- time-dependent process and for the specific case of the P1 neutron kinetics equations. Chapter 4 presents the general procedure for the variational derivation of synthesis approximations and their applications to problems in reactor physics. This chapter also examines the relationship of the spatial synthesis and finite-element method and a hybrid method that combines features of both methods. Chapter 5 describes the relationship of variation theory with the Hamilton-Jacobi theory and with the optimization theories of the maximum principle and dynamic programming. Nuclear physicists and researchers will find this text invaluable.

Distributionen Und Hilbertraumoperatoren

Author: Philippe Blanchard
Publisher: Springer
ISBN: 9783211825075
Size: 75.40 MB
Format: PDF, ePub
View: 2094
Download and Read
Das Buch bietet eine Einführung in die zum Studium der Theoretischen Physik notwendigen mathematischen Grundlagen. Der erste Teil des Buches beschäftigt sich mit der Theorie der Distributionen und vermittelt daneben einige Grundbegriffe der linearen Funktionalanalysis. Der zweite Teil baut darauf auf und gibt eine auf das Wesentliche beschränkte Einführung in die Theorie der linearen Operatoren in Hilbert-Räumen. Beide Teile werden von je einer Übersicht begleitet, die die zentralen Ideen und Begriffe knapp erläutert und den Inhalt kurz beschreibt. In den Anhängen werden einige grundlegende Konstruktionen und Konzepte der Funktionalanalysis dargestellt und wichtige Konsequenzen entwickelt.

Variational Methods In Image Processing

Author: Luminita A. Vese
Publisher: CRC Press
ISBN: 1439849749
Size: 76.32 MB
Format: PDF, Mobi
View: 4678
Download and Read
Variational Methods in Image Processing presents the principles, techniques, and applications of variational image processing. The text focuses on variational models, their corresponding Euler–Lagrange equations, and numerical implementations for image processing. It balances traditional computational models with more modern techniques that solve the latest challenges introduced by new image acquisition devices. The book addresses the most important problems in image processing along with other related problems and applications. Each chapter presents the problem, discusses its mathematical formulation as a minimization problem, analyzes its mathematical well-posedness, derives the associated Euler–Lagrange equations, describes the numerical approximations and algorithms, explains several numerical results, and includes a list of exercises. MATLAB® codes are available online. Filled with tables, illustrations, and algorithms, this self-contained textbook is primarily for advanced undergraduate and graduate students in applied mathematics, scientific computing, medical imaging, computer vision, computer science, and engineering. It also offers a detailed overview of the relevant variational models for engineers, professionals from academia, and those in the image processing industry.

Variational Analysis And Aerospace Engineering Mathematical Challenges For Aerospace Design

Author: Giuseppe Buttazzo
Publisher: Springer Science & Business Media
ISBN: 1461424356
Size: 58.35 MB
Format: PDF, Kindle
View: 4308
Download and Read
This volume consists of papers presented at the Variational Analysis and Aerospace Engineering Workshop II held in Erice, Italy in September 2010 at the International School of Mathematics "Guido Stampacchia". The workshop provided a platform for aerospace engineers and mathematicians (from universities, research centers and industry) to discuss the advanced problems requiring an extensive application of mathematics. The presentations were dedicated to the most advanced subjects in engineering and, in particular to computational fluid dynamics methods, introduction of new materials, optimization in aerodynamics, structural optimization, space missions, flight mechanics, control theory and optimization, variational methods and applications, etc. This book will capture the interest of researchers from both academia and industry.

Variational Methods For The Numerical Solution Of Nonlinear Elliptic Problem

Author: Roland Glowinski
Publisher: SIAM
ISBN: 1611973775
Size: 36.99 MB
Format: PDF, ePub, Mobi
View: 3616
Download and Read
Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.