Download visualizing quaternions the morgan kaufmann series in interactive 3d technology in pdf or read visualizing quaternions the morgan kaufmann series in interactive 3d technology in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get visualizing quaternions the morgan kaufmann series in interactive 3d technology in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Visualizing Quaternions

Author: Andrew J. Hanson
Publisher: Elsevier
ISBN: 0080474772
Size: 55.14 MB
Format: PDF, Docs
View: 3522
Download and Read
Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available. The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions. Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing. Covers both non-mathematical and mathematical approaches to quaternions.

Quaternions And Rotation Sequences

Author: Jack B. Kuipers
Publisher: Princeton University Press
ISBN: 9780691102986
Size: 68.53 MB
Format: PDF, ePub, Docs
View: 203
Download and Read
Ever since the Irish mathematician William Rowan Hamilton introduced quaternions in the nineteenth century--a feat he celebrated by carving the founding equations into a stone bridge--mathematicians and engineers have been fascinated by these mathematical objects. Today, they are used in applications as various as describing the geometry of spacetime, guiding the Space Shuttle, and developing computer applications in virtual reality. In this book, J. B. Kuipers introduces quaternions for scientists and engineers who have not encountered them before and shows how they can be used in a variety of practical situations. The book is primarily an exposition of the quaternion, a 4-tuple, and its primary application in a rotation operator. But Kuipers also presents the more conventional and familiar 3 x 3 (9-element) matrix rotation operator. These parallel presentations allow the reader to judge which approaches are preferable for specific applications. The volume is divided into three main parts. The opening chapters present introductory material and establish the book's terminology and notation. The next part presents the mathematical properties of quaternions, including quaternion algebra and geometry. It includes more advanced special topics in spherical trigonometry, along with an introduction to quaternion calculus and perturbation theory, required in many situations involving dynamics and kinematics. In the final section, Kuipers discusses state-of-the-art applications. He presents a six degree-of-freedom electromagnetic position and orientation transducer and concludes by discussing the computer graphics necessary for the development of applications in virtual reality.

Quaternions For Computer Graphics

Author: John Vince
Publisher: Springer Science & Business Media
ISBN: 9780857297600
Size: 41.65 MB
Format: PDF, ePub
View: 5509
Download and Read
Sir William Rowan Hamilton was a genius, and will be remembered for his significant contributions to physics and mathematics. The Hamiltonian, which is used in quantum physics to describe the total energy of a system, would have been a major achievement for anyone, but Hamilton also invented quaternions, which paved the way for modern vector analysis. Quaternions are one of the most documented inventions in the history of mathematics, and this book is about their invention, and how they are used to rotate vectors about an arbitrary axis. Apart from introducing the reader to the features of quaternions and their associated algebra, the book provides valuable historical facts that bring the subject alive. Quaternions for Computer Graphics introduces the reader to quaternion algebra by describing concepts of sets, groups, fields and rings. It also includes chapters on imaginary quantities, complex numbers and the complex plane, which are essential to understanding quaternions. The book contains many illustrations and worked examples, which make it essential reading for students, academics, researchers and professional practitioners.

Rethinking Quaternions

Author: Ron Goldman
Publisher: Morgan & Claypool Publishers
ISBN: 1608454207
Size: 38.41 MB
Format: PDF, Docs
View: 2781
Download and Read
In addition to these theoretical issues, we also address some computational questions. We develop straightforward formulas for converting back and forth between quaternion and matrix representations for rotations, reflections, and perspective projections, and we discuss the relative advantages and disadvantages of the quaternion and matrix representations for these transformations. Moreover, we show how to avoid distortions due to floating point computations with rotations by using unit quaternions to represent rotations. We also derive the formula for spherical linear interpolation, and we explain how to apply this formula to interpolate between two rotations for key frame animation. Finally, we explain the role of quaternions in low-dimensional Clifford algebras, and we show how to apply the Clifford algebra for R3 to model rotations, reflections, and perspective projections. To help the reader understand the concepts and formulas presented here, we have incorporated many exercises in order to clarify and elaborate some of the key points in the text."--Page 4 of cover.

3d Math Primer For Graphics And Game Development 2nd Edition

Author: Fletcher Dunn
Publisher: CRC Press
ISBN: 1568817231
Size: 53.80 MB
Format: PDF, ePub, Docs
View: 499
Download and Read
This engaging book presents the essential mathematics needed to describe, simulate, and render a 3D world. Reflecting both academic and in-the-trenches practical experience, the authors teach you how to describe objects and their positions, orientations, and trajectories in 3D using mathematics. The text provides an introduction to mathematics for game designers, including the fundamentals of coordinate spaces, vectors, and matrices. It also covers orientation in three dimensions, calculus and dynamics, graphics, and parametric curves.

Curves And Surfaces For Computer Graphics

Author: David Salomon
Publisher: Springer Science & Business Media
ISBN: 0387284524
Size: 19.24 MB
Format: PDF, ePub
View: 2788
Download and Read
Requires only a basic knowledge of mathematics and is geared toward the general educated specialists. Includes a gallery of color images and Mathematica code listings.

Game Physics

Author: David H. Eberly
Publisher: CRC Press
ISBN: 0080964079
Size: 26.89 MB
Format: PDF, ePub, Docs
View: 7353
Download and Read
Create physically realistic 3D Graphics environments with this introduction to the ideas and techniques behind the process. Author David H. Eberly includes simulations to introduce the key problems involved and then gradually reveals the mathematical and physical concepts needed to solve them. He then describes all the algorithmic foundations and uses code examples and working source code to show how they are implemented, culminating in a large collection of physical simulations. The book tackles the complex, challenging issues that other books avoid, including Lagrangian dynamics, rigid body dynamics, impulse methods, resting contact, linear complementarity problems, deformable bodies, mass-spring systems, friction, numerical solution of differential equations, numerical stability and its relationship to physical stability, and Verlet integration methods. This book even describes when real physics isn't necessary - and hacked physics will do.

Quaternion And Clifford Fourier Transforms And Wavelets

Author: Eckhard Hitzer
Publisher: Springer Science & Business Media
ISBN: 3034806035
Size: 25.69 MB
Format: PDF
View: 4978
Download and Read
Quaternion and Clifford Fourier and wavelet transformations generalize the classical theory to higher dimensions and are becoming increasingly important in diverse areas of mathematics, physics, computer science and engineering. This edited volume presents the state of the art in these hypercomplex transformations. The Clifford algebras unify Hamilton’s quaternions with Grassmann algebra. A Clifford algebra is a complete algebra of a vector space and all its subspaces including the measurement of volumes and dihedral angles between any pair of subspaces. Quaternion and Clifford algebras permit the systematic generalization of many known concepts. This book provides comprehensive insights into current developments and applications including their performance and evaluation. Mathematically, it indicates where further investigation is required. For instance, attention is drawn to the matrix isomorphisms for hypercomplex algebras, which will help readers to see that software implementations are within our grasp. It also contributes to a growing unification of ideas and notation across the expanding field of hypercomplex transforms and wavelets. The first chapter provides a historical background and an overview of the relevant literature, and shows how the contributions that follow relate to each other and to prior work. The book will be a valuable resource for graduate students as well as for scientists and engineers.

3d Game Engine Design

Author: David H. Eberly
Publisher: CRC Press
ISBN: 1482267306
Size: 68.21 MB
Format: PDF, ePub, Docs
View: 6131
Download and Read
A major revision of the international bestseller on game programming! Graphics hardware has evolved enormously in the last decade. Hardware can now be directly controlled through techniques such as shader programming, which requires an entirely new thought process of a programmer. 3D Game Engine Design, Second Edition shows step-by-step how to make a shader-based graphics engine and how to tame the new technology. Much new material has been added, including more than twice the coverage of the essential techniques of scene graph management, as well as new methods for managing memory usage in the new generation of game consoles and portable game players. There are expanded discussions of collision detection, collision avoidance, and physics - all challenging subjects for developers.

Essential Mathematics For Games And Interactive Applications Third Edition

Author: James M. Van Verth
Publisher: CRC Press
ISBN: 1482250950
Size: 38.34 MB
Format: PDF, Kindle
View: 3719
Download and Read
Expert Guidance on the Math Needed for 3D Game Programming Developed from the authors’ popular Game Developers Conference (GDC) tutorial, Essential Mathematics for Games and Interactive Applications, Third Edition illustrates the importance of mathematics in 3D programming. It shows you how to properly animate, simulate, and render scenes and discusses the mathematics behind the processes. New to the Third Edition Completely revised to fix errors and make the content flow better, this third edition reflects the increased use of shader graphics pipelines, such as in DirectX 11, OpenGL ES (GLES), and the OpenGL Core Profile. It also updates the material on real-time graphics with coverage of more realistic materials and lighting. The Foundation for Successful 3D Programming The book covers the low-level mathematical and geometric representations and algorithms that are the core of any game engine. It also explores all the stages of the rendering pipeline. The authors explain how to represent, transform, view, and animate geometry. They then focus on visual matters, specifically the representation, computation, and use of color. They also address randomness, intersecting geometric entities, and physical simulation. An Introduction to Creating Real and Active Virtual Worlds This updated book provides you with a conceptual understanding of the mathematics needed to create 3D games as well as a practical understanding of how these mathematical bases actually apply to games and graphics. It not only includes the theoretical mathematical background but also incorporates many examples of how the concepts are used to affect how a game looks and plays. Web Resource A supplementary website contains a collection of source code, supporting libraries, and interactive demonstrations that illustrate the concepts and enable you to experiment with animation and simulation applications. The site also includes slides and notes from the authors’ GDC tutorials.