Download applied regression analysis and generalized linear models in pdf or read applied regression analysis and generalized linear models in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get applied regression analysis and generalized linear models in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Applied Regression Analysis And Generalized Linear Models

Author: John Fox
Publisher: SAGE Publications
ISBN: 1483321312
Size: 23.36 MB
Format: PDF, ePub, Mobi
View: 3473
Download and Read
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book.

Applied Regression Analysis Linear Models And Related Methods

Author: John Fox
Publisher: SAGE
ISBN: 9780803945401
Size: 69.76 MB
Format: PDF, ePub
View: 2031
Download and Read
An accessible, detailed, and up-to-date treatment of regression analysis, linear models, and closely related methods is provided in this book. Incorporating nearly 200 graphs and numerous examples and exercises that employ real data from the social sciences, the book begins with a consideration of the role of statistical data analysis in social research. It then moves on to cover the following topics: graphical methods for examining and transforming data; linear least-squares regression; dummy-variables regression; analysis of variance; diagnostic methods for discovering whether a linear model fit to data adequately represents the data; extensions to linear least squares, including logit and probit models, time-series regression, nonlinear

Applied Regression Analysis And Generalized Linear Models

Author: John Fox
Publisher: SAGE Publications
ISBN: 1483352528
Size: 28.10 MB
Format: PDF
View: 7550
Download and Read
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Second Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material throughout the book. Key Updates to the Second Edition: Provides greatly enhanced coverage of generalized linear models, with an emphasis on models for categorical and count data Offers new chapters on missing data in regression models and on methods of model selection Includes expanded treatment of robust regression, time-series regression, nonlinear regression, and nonparametric regression Incorporates new examples using larger data sets Includes an extensive Web site at http://www.sagepub.com/fox that presents appendixes, data sets used in the book and for data-analytic exercises, and the data-analytic exercises themselves Intended Audience: This core text will be a valuable resource for graduate students and researchers in the social sciences (particularly sociology, political science, and psychology) and other disciplines that employ linear and related models for data analysis.

Applied Regression Analysis And Generalized Linear Models

Author: John Fox
Publisher: SAGE Publications
ISBN: 1483386473
Size: 24.66 MB
Format: PDF, Mobi
View: 3082
Download and Read
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book.

An R Companion To Applied Regression

Author: John Fox
Publisher: SAGE Publications
ISBN: 141297514X
Size: 68.64 MB
Format: PDF
View: 7310
Download and Read
This book aims to provide a broad introduction to the R statistical environment in the context of applied regression analysis, which is typically studied by social scientists and others in a second course in applied statistics.

An R And S Plus Companion To Applied Regression

Author: John Fox
Publisher: SAGE
ISBN: 9780761922803
Size: 32.69 MB
Format: PDF, ePub, Mobi
View: 2865
Download and Read
"This book fits right into a needed niche: rigorous enough to give full explanation of the power of the S language, yet accessible enough to assign to social science graduate students without fear of intimidation. It is a tremendous balance of applied statistical "firepower" and thoughtful explanation. It meets all of the important mechanical needs: each example is given in detail, code and data are freely available, and the nuances of models are given rather than just the bare essentials. It also meets some important theoretical needs: linear models, categorical data analysis, an introduction to applying GLMs, a discussion of model diagnostics, and useful instructions on writing customized functions. " —JEFF GILL, University of Florida, Gainesville

Applied Regression Including Computing And Graphics

Author: R. Dennis Cook
Publisher: John Wiley & Sons
ISBN: 0470317787
Size: 58.57 MB
Format: PDF, Mobi
View: 2641
Download and Read
A step-by-step guide to computing and graphics in regression analysis In this unique book, leading statisticians Dennis Cook and Sanford Weisberg expertly blend regression fundamentals and cutting-edge graphical techniques. They combine and up- date most of the material from their widely used earlier work, An Introduction to Regression Graphics, and Weisberg's Applied Linear Regression; incorporate the latest in statistical graphics, computing, and regression models; and wind up with a modern, fully integrated approach to one of the most important tools of data analysis. In 23 concise, easy-to-digest chapters, the authors present:? A wealth of simple 2D and 3D graphical techniques, helping visualize results through graphs * An improved version of the user-friendly Arc software, which lets readers promptly implement new ideas * Complete coverage of regression models, including logistic regression and generalized linear models * More than 300 figures, easily reproducible on the computer * Numerous examples and problems based on real data * A companion Web site featuring free software and advice, available at www.wiley.com/mathem atics Accessible, self-contained, and fully referenced, Applied Regression Including Computing and Graphics assumes only a first course in basic statistical methods and provides a bona fide user manual for the Arc software. It is an invaluable resource for anyone interested in learning how to analyze regression problems with confidence and depth.

Applied Regression Analysis

Author: Norman R. Draper
Publisher: John Wiley & Sons
ISBN: 1118625684
Size: 70.27 MB
Format: PDF, Mobi
View: 4058
Download and Read
An outstanding introduction to the fundamentals of regression analysis-updated and expanded The methods of regression analysis are the most widely used statistical tools for discovering the relationships among variables. This classic text, with its emphasis on clear, thorough presentation of concepts and applications, offers a complete, easily accessible introduction to the fundamentals of regression analysis. Assuming only a basic knowledge of elementary statistics, Applied Regression Analysis, Third Edition focuses on the fitting and checking of both linear and nonlinear regression models, using small and large data sets, with pocket calculators or computers. This Third Edition features separate chapters on multicollinearity, generalized linear models, mixture ingredients, geometry of regression, robust regression, and resampling procedures. Extensive support materials include sets of carefully designed exercises with full or partial solutions and a series of true/false questions with answers. All data sets used in both the text and the exercises can be found on the companion disk at the back of the book. For analysts, researchers, and students in university, industrial, and government courses on regression, this text is an excellent introduction to the subject and an efficient means of learning how to use a valuable analytical tool. It will also prove an invaluable reference resource for applied scientists and statisticians.

Generalized Linear Models

Author: Raymond H. Myers
Publisher: John Wiley & Sons
ISBN: 0470556978
Size: 76.72 MB
Format: PDF, Kindle
View: 3845
Download and Read
Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.

Regression Diagnostics

Author: John Fox
Publisher: SAGE
ISBN: 9780803939714
Size: 37.57 MB
Format: PDF, Mobi
View: 4956
Download and Read
With Regression Diagnostics, researchers now have an accessible explanation of the techniques needed for exploring problems that compromise a regression analysis and for determining whether certain assumptions appear reasonable. The book covers such topics as the problem of collinearity in multiple regression, dealing with outlying and influential data, non-normality of errors, non-constant error variance and the problems and opportunities presented by discrete data. In addition, sophisticated diagnostics based on maximum-likelihood methods, scores tests, and constructed variables are introduced.