Download belief evidence and uncertainty problems of epistemic inference springerbriefs in philosophy in pdf or read belief evidence and uncertainty problems of epistemic inference springerbriefs in philosophy in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get belief evidence and uncertainty problems of epistemic inference springerbriefs in philosophy in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Belief Evidence And Uncertainty

Author: Prasanta S. Bandyopadhyay
Publisher: Springer
ISBN: 3319277723
Size: 34.88 MB
Format: PDF, Kindle
View: 6146
Download and Read
This work breaks new ground by carefully distinguishing the concepts of belief, confirmation, and evidence and then integrating them into a better understanding of personal and scientific epistemologies. It outlines a probabilistic framework in which subjective features of personal knowledge and objective features of public knowledge have their true place. It also discusses the bearings of some statistical theorems on both formal and traditional epistemologies while showing how some of the existing paradoxes in both can be resolved with the help of this framework.This book has two central aims: First, to make precise a distinction between the concepts of confirmation and evidence and to argue that failure to recognize this distinction is the source of certain otherwise intractable epistemological problems. The second goal is to demonstrate to philosophers the fundamental importance of statistical and probabilistic methods, at stake in the uncertain conditions in which for the most part we lead our lives, not simply to inferential practice in science, where they are now standard, but to epistemic inference in other contexts as well. Although the argument is rigorous, it is also accessible. No technical knowledge beyond the rudiments of probability theory, arithmetic, and algebra is presupposed, otherwise unfamiliar terms are always defined and a number of concrete examples are given. At the same time, fresh analyses are offered with a discussion of statistical and epistemic reasoning by philosophers. This book will also be of interest to scientists and statisticians looking for a larger view of their own inferential techniques.The book concludes with a technical appendix which introduces an evidential approach to multi-model inference as an alternative to Bayesian model averaging.