Download carbon nanotubes for polymer reinforcement in pdf or read carbon nanotubes for polymer reinforcement in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get carbon nanotubes for polymer reinforcement in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Carbon Nanotubes For Polymer Reinforcement

Author: Peng-Cheng Ma
Publisher: CRC Press
ISBN: 9781439826249
Size: 52.85 MB
Format: PDF, Kindle
View: 5194
Download and Read
Discovered in the twentieth century, carbon nanotubes (CNT) were an integral part of science and industry by the beginning of the twenty first century, revolutionizing chemistry, physics, and materials science. More recent advances in carbon nanotube production methods have resulted in a tremendous push to incorporate CNTs into polymer matrices. Although many advances have been made, two major obstacles continue unresolved: the enhancement of interfacial adhesion between CNTs and polymer matrix, and the improvement of dispersion of CNTs in polymers. Both substantial original contributors to the field, the authors present Carbon Nanotubes for Polymer Reinforcement, the first monograph on various conventional and innovative techniques to disperse and functionalize carbon nanotubes for polymer reinforcement, elegantly explaining the basic sciences and technologies involved in those processes. Topics covered include: Use of CNTs in fabricating novel polymer composites Principles and mechanisms behind CNT dispersion and functionalization Methods for the functionalization and dispersion of CNTs in polymer matrices Effects of CNTs on functional and mechanical properties of polymer composites Optimization of CNT/polymer nanocomposite fabrication Carbon Nanotubes for Polymer Reinforcement is a comprehensive treatment and critical review of the new class of polymer nanocomposites, and points to areas of future developments. Composites engineers, scientists, researchers, and students will find the basic knowledge and technical results contained herein informative and useful references for their work, whether for advanced research or for design and manufacture of such composites.

Carbon Nanotubes For Polymer Reinforcement

Author: Peng-Cheng Ma
Publisher: CRC Press
ISBN: 9781439826218
Size: 37.86 MB
Format: PDF, Docs
View: 6782
Download and Read
Discovered in the twentieth century, carbon nanotubes (CNT) were an integral part of science and industry by the beginning of the twenty first century, revolutionizing chemistry, physics, and materials science. More recent advances in carbon nanotube production methods have resulted in a tremendous push to incorporate CNTs into polymer matrices. Although many advances have been made, two major obstacles continue unresolved: the enhancement of interfacial adhesion between CNTs and polymer matrix, and the improvement of dispersion of CNTs in polymers. Both substantial original contributors to the field, the authors present Carbon Nanotubes for Polymer Reinforcement, the first monograph on various conventional and innovative techniques to disperse and functionalize carbon nanotubes for polymer reinforcement, elegantly explaining the basic sciences and technologies involved in those processes. Topics covered include: Use of CNTs in fabricating novel polymer composites Principles and mechanisms behind CNT dispersion and functionalization Methods for the functionalization and dispersion of CNTs in polymer matrices Effects of CNTs on functional and mechanical properties of polymer composites Optimization of CNT/polymer nanocomposite fabrication Carbon Nanotubes for Polymer Reinforcement is a comprehensive treatment and critical review of the new class of polymer nanocomposites, and points to areas of future developments. Composites engineers, scientists, researchers, and students will find the basic knowledge and technical results contained herein informative and useful references for their work, whether for advanced research or for design and manufacture of such composites.

Carbon Nanotube Reinforced Composites

Author: Sie Chin Tjong
Publisher: John Wiley & Sons
ISBN: 3527627006
Size: 53.99 MB
Format: PDF, Mobi
View: 1389
Download and Read
Providing a broad insight into the potential applications of carbon nanotubes with metals and ceramic materials as a matrix, this book focuses on the preparation and the microstructural, physical, and mechanical characterizations of such novel nanocomposites. It features information on current synthesis and structure-property-relationships of metals and ceramics reinforced with CNT, organizing the vast array of surveys scattered throughout the literature in a single monograph. With its laboratory protocols and data tables this is invaluable reading for research workers and academics, as well as for applied scientists and industry personnel.

Carbon Nanotube Reinforced Polymers

Author: Roham Rafiee
Publisher: Elsevier
ISBN: 0323482228
Size: 45.72 MB
Format: PDF, ePub, Docs
View: 7333
Download and Read
Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components Analyzes the behavior of carbon nanotube-based composites in different conditions

Carbon Nanotube Reinforced Composites

Author: Marcio Loos
Publisher: Elsevier
ISBN: 145573196X
Size: 22.89 MB
Format: PDF, Mobi
View: 4009
Download and Read
Carbon Nanotube Reinforced Composites introduces a wide audience of engineers, scientists and product designers to this important and rapidly expanding class of high performance composites. Dr Loos provides readers with the scientific fundamentals of carbon nanotubes (CNTs), CNT composites and nanotechnology in a way which will enable them to understand the performance, capability and potential of the materials under discussion. He also investigates how CNT reinforcement can be used to enhance the mechanical, electrical and thermal properties of polymer composites. Production methods, processing technologies and applications are fully examined, with reference to relevant patents. Finally, health and safety issues related to the use of CNTs are investigated. Dr. Loos compares the theoretical expectations of using CNTs to the results obtained in labs, and explains the reasons for the discrepancy between theoretical and experimental results. This approach makes the book an essential reference and practical guide for engineers and product developers working with reinforced polymers – as well as researchers and students in polymer science, materials and nanotechnology. A wealth of applications information is included, taken from the wide range of industry sectors utilizing CNT reinforced composites, such as energy, coatings, defense, electronics, medical devices, and high performance sports equipment. Introduces a wide range of readers involved in plastics engineering, product design and manufacturing to the relevant topics in nano-science, nanotechnology, nanotubes and composites. Assesses effects of CNTs as reinforcing agents, both in a materials context and an applications setting. Focuses on applications aspects – performance, cost, health and safety, etc – for a wide range of industry sectors, e.g. energy, coatings, defense, electronics, medical devices, high performance sports equipment, etc.

Carbon Nanotube Polymer Composites

Author: Dimitrios Tasis
Publisher: Royal Society of Chemistry
ISBN: 1782625828
Size: 56.77 MB
Format: PDF, ePub
View: 2759
Download and Read
Chemically-modified carbon nanotubes (CNTs) exhibit a wide range of physical and chemical properties which makes them an attractive starting material for the preparation of super-strong and highly-conductive fibres and films. Much information is available across the primary literature, making it difficult to obtain an overall picture of the state-of-the-art. This volume brings together some of the leading researchers in the field from across the globe to present the potential these materials have, not only in developing and characterising novel materials but also the devices which can be fabricated from them. Topics featured in the book include Raman characterisation, industrial polymer materials, actuators and sensors and polymer reinforcement, with chapters prepared by highly-cited authors from across the globe. A valuable handbook for any academic or industrial laboratory, this book will appeal to newcomers to the field and established researchers alike.

Carbon Nanotubes

Author: Arvind Agarwal
Publisher: CRC Press
ISBN: 9781439811504
Size: 16.50 MB
Format: PDF, ePub, Mobi
View: 5917
Download and Read
From the Foreword, written by legendary nano pioneer M. Meyyappan, Chief Scientist for Exploration Technology NASA Ames Research Center, Moffett Field, California, USA: "...there is critical need for a book to summarize the status of the field but more importantly to lay out the principles behind the technology. This is what Professor Arvind Agarwal and his co-workers ... have done here." Carbon Nanotubes: Reinforced Metal Matrix Composites reflects the authors’ desire to share the benefits of nanotechnology with the masses by developing metal matrix carbon nanotube (MM-CNT) composites for large-scale applications. Multiwall carbon nanotubes can now be produced on a large scale and at a significantly reduced cost. The book explores potential applications and applies the author’s own research to highlight critical developmental issues for different MM-CNT composites—and then outline novel solutions. With this problem-solving approach, the book explores: Advantages, limitations, and the evolution of processing techniques used for MM-CNT composites Characterization techniques unique to the study of MM-CNT composites—and the limitations of these methods Existing research on different MM-CNT composites, presented in useful tables that include composition, processing method, quality of CNT dispersion, and properties The micro-mechanical strengthening that results from adding CNT The applicability of micro-mechanics models in MM-CNT composites Significance of chemical stability for carbon nanotubes in the metal matrix as a function of processing, and its impact on CNT/metal interface and mechanical properties Computational studies that have not been sufficiently covered although they are essential to research and development The critical issue of CNT dispersion in the metal matrix, as well as a unique way to quantify CNT distribution and subsequently improve control of the processing parameters for obtaining improved properties Carbon Nanotubes: Reinforced Metal Matrix Composites paints a vivid picture of scientific and application achievements in this field. Exploring the mechanisms through which CNTs are enhancing the properties of different metal-based composites, the authors provide a roadmap to help researchers develop MM-CNT composites and choose potential materials for use in emerging areas of technology.

Fundamental Study Of The Machinability Of Carbon Nanotube Reinforced Polymer Composites

Author: Johnson Samuel
Publisher:
ISBN: 9781109223842
Size: 27.16 MB
Format: PDF, Kindle
View: 3395
Download and Read
The effective manufacturing of micro/meso-scale parts and products using carbon nanotube (CNT) composites requires a knowledge base that will enable the design of these composites to meet both the micro-scale engineering and manufacturing requirements. This research has sought to understand the effect of CNTs on the machining performance of CNT composites and to identify critical microstructural parameters that influence their machinability.

Polymer Carbon Nanotube Composites

Author: Tony McNally
Publisher: Elsevier
ISBN: 0857091395
Size: 13.52 MB
Format: PDF, Kindle
View: 736
Download and Read
Understanding the properties of polymer carbon nanotube (CNT) composites is the key to these materials finding new applications in a wide range of industries, including but not limited to electronics, aerospace and biomedical/bioengineering. Polymer-carbon nanotube composites provides comprehensive and in-depth coverage of the preparation, characterisation, properties and applications of these technologically interesting new materials. Part one covers the preparation and processing of composites of thermoplastics with CNTs, with chapters covering in-situ polymerization, melt processing and CNT surface treatment, as well as elastomer and thermoset CNT composites. Part two concentrates on properties and characterization, including chapters on the quantification of CNT dispersion using microscopy techniques, and on topics as diverse as thermal degradation of polymer/CNT composites, the use of rheology, Raman spectroscopy and multi-scale modelling to study polymer/CNT composites, and CNT toxicity. In part three, the applications of polymer/CNT composites are reviewed, with chapters on specific applications such as in fibres and cables, bioengineering applications and conductive polymer CNT composites for sensing. With its distinguished editors and international team of contributors, Polymer-carbon nanotube composites is an essential reference for scientists, engineers and designers in high-tech industry and academia with an interest in polymer nanotechnology and nanocomposites. Provides comprehensive and in-depth coverage of the preparation, characterisation and properties of these technologically interesting new materials Reviews the preparation and processing of composites of thermoplastics with CNTs, covering in-situ polymerization, melt processing and CNT surface treatment Explores applications of polymer/CNT composites such as in fibres and cables, bioengineering applications and conductive polymer CNT composites for sensing

Finite Element Modeling Of Carbon Nanotube Reinforced Polymer Composites And Evaluating Its Thermal Conductivities

Author: Raghuram Basavanahalli
Publisher:
ISBN: 9780542946585
Size: 56.62 MB
Format: PDF, Docs
View: 3812
Download and Read
High thermal conductivity of carbon nanotubes has motivated us to study and understand the thermal mechanisms in nanocomposites. Though several theoretical models predict a high thermal conductivity for CNT reinforced polymer composites, the experimental validation are not so encouraging. A finite element model of MWNT reinforced nanocomposite is developed based on continuum mechanics approach. The finite element model is a representative volume element (RVE) with single MWNT inclusion. The inclusion is modeled based on the continuum model of MWNT as effective solid fiber [22]. The interface resistance between the nanotube and the matrix material is modeled using thermal contact elements. The finite element analysis was carried out keeping volume fraction of MWNT fibers as constant and varying three important parameters which influences the effective thermal conductivity. Analysis with varying volume fractions of CNT fibers was also carried out to study the influence of volume fraction. The results obtained were in agreeable range with the theoretical calculations made based on the work of Bagchi and Nomura [22]. The effective thermal conductivity of MWNT reinforced nanocomposites with MWNTs of high aspect ratios showed gradual increase in conductivity with increase in length while it showed a drastic decrease in effective thermal conductivity with increase in the diameter of the MWNT inclusion. The finite element analysis showed that the interface resistance between the nanotube and the matrix material does not affect effective thermal conductivity noticeably which is contradictory with few theoretical models which attribute interface resistance for lower than expected effective thermal conductivity. The analysis predicts linear increase of effective thermal conductivity with increase in volume fraction of the MWNT fibers in matrix material; this is also in accordance with the theoretical model. The above analysis also validates the use of finite element approach based on continuum mechanics in studying the overall behavior of the nanocomposites.