Download first contact with tensorflow get started with deep learning programming in pdf or read first contact with tensorflow get started with deep learning programming in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get first contact with tensorflow get started with deep learning programming in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

First Contact With Tensorflow

Author: Jordi Torres
ISBN: 9781326569334
Size: 17.25 MB
Format: PDF, ePub
View: 6270
Download and Read
The purpose of this book is to help to spread TensorFlow knowledge among engineers who want to expand their wisdom in the exciting world of Machine Learning. We believe that anyone with an engineering background might require from now on Deep Learning, an

Deep Learning With Tensorflow

Author: Giancarlo Zaccone
Publisher: Packt Publishing Ltd
ISBN: 1788831837
Size: 58.64 MB
Format: PDF, Docs
View: 2611
Download and Read
Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of TensorFlow. Key Features Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow Explore deep neural networks and layers of data abstraction with the help of this comprehensive guide Gain real-world contextualization through some deep learning problems concerning research and application Book Description Deep learning is a branch of machine learning algorithms based on learning multiple levels of abstraction. Neural networks, which are at the core of deep learning, are being used in predictive analytics, computer vision, natural language processing, time series forecasting, and to perform a myriad of other complex tasks. This book is conceived for developers, data analysts, machine learning practitioners and deep learning enthusiasts who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries. Throughout the book, you’ll learn how to develop deep learning applications for machine learning systems using Feedforward Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Autoencoders, and Factorization Machines. Discover how to attain deep learning programming on GPU in a distributed way. You'll come away with an in-depth knowledge of machine learning techniques and the skills to apply them to real-world projects. What you will learn Apply deep machine intelligence and GPU computing with TensorFlow Access public datasets and use TensorFlow to load, process, and transform the data Discover how to use the high-level TensorFlow API to build more powerful applications Use deep learning for scalable object detection and mobile computing Train machines quickly to learn from data by exploring reinforcement learning techniques Explore active areas of deep learning research and applications Who this book is for The book is for people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus.

Getting Started With Tensorflow

Author: Giancarlo Zaccone
Publisher: Packt Publishing Ltd
ISBN: 1786469065
Size: 69.24 MB
Format: PDF, ePub, Docs
View: 6842
Download and Read
Get up and running with the latest numerical computing library by Google and dive deeper into your data! About This Book Get the first book on the market that shows you the key aspects TensorFlow, how it works, and how to use it for the second generation of machine learning Want to perform faster and more accurate computations in the field of data science? This book will acquaint you with an all-new refreshing library—TensorFlow! Dive into the next generation of numerical computing and get the most out of your data with this quick guide Who This Book Is For This book is dedicated to all the machine learning and deep learning enthusiasts, data scientists, researchers, and even students who want to perform more accurate, fast machine learning operations with TensorFlow. Those with basic knowledge of programming (Python and C/C++) and math concepts who want to be introduced to the topics of machine learning will find this book useful. What You Will Learn Install and adopt TensorFlow in your Python environment to solve mathematical problems Get to know the basic machine and deep learning concepts Train and test neural networks to fit your data model Make predictions using regression algorithms Analyze your data with a clustering procedure Develop algorithms for clustering and data classification Use GPU computing to analyze big data In Detail Google's TensorFlow engine, after much fanfare, has evolved in to a robust, user-friendly, and customizable, application-grade software library of machine learning (ML) code for numerical computation and neural networks. This book takes you through the practical software implementation of various machine learning techniques with TensorFlow. In the first few chapters, you'll gain familiarity with the framework and perform the mathematical operations required for data analysis. As you progress further, you'll learn to implement various machine learning techniques such as classification, clustering, neural networks, and deep learning through practical examples. By the end of this book, you'll have gained hands-on experience of using TensorFlow and building classification, image recognition systems, language processing, and information retrieving systems for your application. Style and approach Get quickly up and running with TensorFlow using this fast-paced guide. You will get to know everything that can be done with TensorFlow and we'll show you how to implement it in your environment. The examples in the book are from the core of the computation industry—something you can connect to and will find familiar.

Hands On Deep Learning Architectures With Python

Author: Yuxi (Hayden) Liu
Publisher: Packt Publishing Ltd
ISBN: 1788990501
Size: 53.64 MB
Format: PDF
View: 5418
Download and Read
Concepts, tools, and techniques to explore deep learning architectures and methodologies Key Features Explore advanced deep learning architectures using various datasets and frameworks Implement deep architectures for neural network models such as CNN, RNN, GAN, and many more Discover design patterns and different challenges for various deep learning architectures Book Description Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world. What you will learn Implement CNNs, RNNs, and other commonly used architectures with Python Explore architectures such as VGGNet, AlexNet, and GoogLeNet Build deep learning architectures for AI applications such as face and image recognition, fraud detection, and many more Understand the architectures and applications of Boltzmann machines and autoencoders with concrete examples Master artificial intelligence and neural network concepts and apply them to your architecture Understand deep learning architectures for mobile and embedded systems Who this book is for If you’re a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book

R Deep Learning Essentials

Author: Mark Hodnett
Publisher: Packt Publishing Ltd
ISBN: 1788997808
Size: 12.77 MB
Format: PDF, ePub, Mobi
View: 7497
Download and Read
Implement neural network models in R 3.5 using TensorFlow, Keras, and MXNet Key Features Use R 3.5 for building deep learning models for computer vision and text Apply deep learning techniques in cloud for large-scale processing Build, train, and optimize neural network models on a range of datasets Book Description Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem. This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You’ll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics. By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects. What you will learn Build shallow neural network prediction models Prevent models from overfitting the data to improve generalizability Explore techniques for finding the best hyperparameters for deep learning models Create NLP models using Keras and TensorFlow in R Use deep learning for computer vision tasks Implement deep learning tasks, such as NLP, recommendation systems, and autoencoders Who this book is for This second edition of R Deep Learning Essentials is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. Fundamental understanding of the R language is necessary to get the most out of this book.

Deep Learning By Example

Author: Ahmed Menshawy
Publisher: Packt Publishing Ltd
ISBN: 178839576X
Size: 24.59 MB
Format: PDF, Mobi
View: 7339
Download and Read
Grasp the fundamental concepts of deep learning using Tensorflow in a hands-on manner Key Features Get a first-hand experience of the deep learning concepts and techniques with this easy-to-follow guide Train different types of neural networks using Tensorflow for real-world problems in language processing, computer vision, transfer learning, and more Designed for those who believe in the concept of 'learn by doing', this book is a perfect blend of theory and code examples Book Description Deep learning is a popular subset of machine learning, and it allows you to build complex models that are faster and give more accurate predictions. This book is your companion to take your first steps into the world of deep learning, with hands-on examples to boost your understanding of the topic. This book starts with a quick overview of the essential concepts of data science and machine learning which are required to get started with deep learning. It introduces you to Tensorflow, the most widely used machine learning library for training deep learning models. You will then work on your first deep learning problem by training a deep feed-forward neural network for digit classification, and move on to tackle other real-world problems in computer vision, language processing, sentiment analysis, and more. Advanced deep learning models such as generative adversarial networks and their applications are also covered in this book. By the end of this book, you will have a solid understanding of all the essential concepts in deep learning. With the help of the examples and code provided in this book, you will be equipped to train your own deep learning models with more confidence. What you will learn Understand the fundamentals of deep learning and how it is different from machine learning Get familiarized with Tensorflow, one of the most popular libraries for advanced machine learning Increase the predictive power of your model using feature engineering Understand the basics of deep learning by solving a digit classification problem of MNIST Demonstrate face generation based on the CelebA database, a promising application of generative models Apply deep learning to other domains like language modeling, sentiment analysis, and machine translation Who this book is for This book targets data scientists and machine learning developers who wish to get started with deep learning. If you know what deep learning is but are not quite sure of how to use it, this book will help you as well. An understanding of statistics and data science concepts is required. Some familiarity with Python programming will also be beneficial.

Getting Started With Deep Learning

Author: Ricardo Calix
Publisher: Createspace Independent Publishing Platform
ISBN: 9781542567091
Size: 10.53 MB
Format: PDF, Kindle
View: 6653
Download and Read
Ever since 2007 with the explosion in the use of parallel hardware, the field of machine learning has become more exciting and more promising. It seems that the dream of true AI is finally just around the corner. Certainly, there are many companies that are starting to rely heavily on AI for their products. These include companies in search like Facebook, Google, as well as retailers and multimedia companies like Amazon and Netflix. But more recently many others in the health-care and cyber security industries are also interested in what AI and machine learning can do for them. Some of these technologies such as Tensorflow (which came about around 2015) are new and not widely understood. In this book I hope to provide basic discussions of machine learning and in particular deep learning to help readers to quickly get started in using these technologies. The book is not a comprehensive survey on deep learning. There are many topics I do not cover here as too much material can be overwhelming to the un-initiated. There are many good books that cover all the theory in depth and I will mention some of them in the book. Instead, the goal in this book is to help people new to deep learning to quickly get started with these concepts using python and Tensorflow. Therefore, a lot of detail is spent on helping the reader to write his or her first deep network classifier. Additionally, I will try to connect several elements in machine learning which I think are related and are very important for data analysis and automatic classification. In general, I prefer python and I will try to present all examples using this great language. I will also use the more common libraries and the Linux development environment. Many people use SKlearn and I have therefore tried to use this library in the Tensorflow examples so that the focus is mainly on creating the deep layer network architectures.

Applied Deep Learning With Python

Author: Alex Galea
Publisher: Packt Publishing Ltd
ISBN: 1789806992
Size: 22.48 MB
Format: PDF, Mobi
View: 2814
Download and Read
A hands-on guide to deep learning that’s filled with intuitive explanations and engaging practical examples Key Features Designed to iteratively develop the skills of Python users who don’t have a data science background Covers the key foundational concepts you’ll need to know when building deep learning systems Full of step-by-step exercises and activities to help build the skills that you need for the real-world Book Description Taking an approach that uses the latest developments in the Python ecosystem, you’ll first be guided through the Jupyter ecosystem, key visualization libraries and powerful data sanitization techniques before we train our first predictive model. We’ll explore a variety of approaches to classification like support vector networks, random decision forests and k-nearest neighbours to build out your understanding before we move into more complex territory. It’s okay if these terms seem overwhelming; we’ll show you how to put them to work. We’ll build upon our classification coverage by taking a quick look at ethical web scraping and interactive visualizations to help you professionally gather and present your analysis. It’s after this that we start building out our keystone deep learning application, one that aims to predict the future price of Bitcoin based on historical public data. By guiding you through a trained neural network, we’ll explore common deep learning network architectures (convolutional, recurrent, generative adversarial) and branch out into deep reinforcement learning before we dive into model optimization and evaluation. We’ll do all of this whilst working on a production-ready web application that combines Tensorflow and Keras to produce a meaningful user-friendly result, leaving you with all the skills you need to tackle and develop your own real-world deep learning projects confidently and effectively. What you will learn Discover how you can assemble and clean your very own datasets Develop a tailored machine learning classification strategy Build, train and enhance your own models to solve unique problems Work with production-ready frameworks like Tensorflow and Keras Explain how neural networks operate in clear and simple terms Understand how to deploy your predictions to the web Who this book is for If you're a Python programmer stepping into the world of data science, this is the ideal way to get started.

Python Deep Learning Develop Your First Neural Network In Python Using Tensorflow Keras And Pytorch

Author: Samuel Burns
Publisher: Step-By-Step Tutorial for Begi
ISBN: 9781092562225
Size: 33.38 MB
Format: PDF, Kindle
View: 1706
Download and Read
Build your Own Neural Network today. Through easy-to-follow instruction and examples, you'll learn the fundamentals of Deep learning and build your very own Neural Network in Python using TensorFlow, Keras, PyTorch, and Theano. While you have the option of spending thousands of dollars on big and boring textbooks, we recommend getting the same pieces of information for a fraction of the cost. So Get Your Copy Now!! Why this book? Book ObjectivesThe following are the objectives of this book: To help you understand deep learning in detail To help you know how to get started with deep learning in Python by setting up the coding environment. To help you transition from a deep learning Beginner to a Professional. To help you learn how to develop a complete and functional artificial neural network model in Python on your own. Who this Book is for? The author targets the following groups of people: Anybody who is a complete beginner to deep learning with Python. Anybody in need of advancing their Python for deep learning skills. Professors, lecturers or tutors who are looking to find better ways to explain Deep Learning to their students in the simplest and easiest way. Students and academicians, especially those focusing on python programming, neural networks, machine learning, and deep learning. What do you need for this Book? You are required to have installed the following on your computer: Python 3.X. TensorFlow . Keras . PyTorch The Author guides you on how to install the rest of the Python libraries that are required for deep learning.The author will guide you on how to install and configure the rest. What is inside the book? What is Deep Learning? An Overview of Artificial Neural Networks. Exploring the Libraries. Installation and Setup. TensorFlow Basics. Deep Learning with TensorFlow. Keras Basics. PyTorch Basics. Creating Convolutional Neural Networks with PyTorch. Creating Recurrent Neural Networks with PyTorch. From the back cover. Deep learning is part of machine learning methods based on learning data representations. This book written by Samuel Burns provides an excellent introduction to deep learning methods for computer vision applications. The author does not focus on too much math since this guide is designed for developers who are beginners in the field of deep learning. The book has been grouped into chapters, with each chapter exploring a different feature of the deep learning libraries that can be used in Python programming language. Each chapter features a unique Neural Network architecture including Convolutional Neural Networks. After reading this book, you will be able to build your own Neural Networks using Tenserflow, Keras, and PyTorch. Moreover, the author has provided Python codes, each code performing a different task. Corresponding explanations have also been provided alongside each piece of code to help the reader understand the meaning of the various lines of the code. In addition to this, screenshots showing the output that each code should return have been given. The author has used a simple language to make it easy even for beginners to understand.

Tensorflow 2 0 Quick Start Guide

Author: Tony Holdroyd
Publisher: Packt Publishing Ltd
ISBN: 1789536960
Size: 26.59 MB
Format: PDF, Mobi
View: 847
Download and Read
Perform supervised and unsupervised machine learning and learn advanced techniques such as training neural networks. Key Features Train your own models for effective prediction, using high-level Keras API Perform supervised and unsupervised machine learning and learn advanced techniques such as training neural networks Get acquainted with some new practices introduced in TensorFlow 2.0 Alpha Book Description TensorFlow is one of the most popular machine learning frameworks in Python. With this book, you will improve your knowledge of some of the latest TensorFlow features and will be able to perform supervised and unsupervised machine learning and also train neural networks. After giving you an overview of what's new in TensorFlow 2.0 Alpha, the book moves on to setting up your machine learning environment using the TensorFlow library. You will perform popular supervised machine learning tasks using techniques such as linear regression, logistic regression, and clustering. You will get familiar with unsupervised learning for autoencoder applications. The book will also show you how to train effective neural networks using straightforward examples in a variety of different domains. By the end of the book, you will have been exposed to a large variety of machine learning and neural network TensorFlow techniques. What you will learn Use tf.Keras for fast prototyping, building, and training deep learning neural network models Easily convert your TensorFlow 1.12 applications to TensorFlow 2.0-compatible files Use TensorFlow to tackle traditional supervised and unsupervised machine learning applications Understand image recognition techniques using TensorFlow Perform neural style transfer for image hybridization using a neural network Code a recurrent neural network in TensorFlow to perform text-style generation Who this book is for Data scientists, machine learning developers, and deep learning enthusiasts looking to quickly get started with TensorFlow 2 will find this book useful. Some Python programming experience with version 3.6 or later, along with a familiarity with Jupyter notebooks will be an added advantage. Exposure to machine learning and neural network techniques would also be helpful.