Download fundamentals of powder diffraction and structural characterization of materials second edition in pdf or read fundamentals of powder diffraction and structural characterization of materials second edition in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get fundamentals of powder diffraction and structural characterization of materials second edition in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Fundamentals Of Powder Diffraction And Structural Characterization Of Materials Second Edition

Author: Vitalij Pecharsky
Publisher: Springer Science & Business Media
ISBN: 0387095780
Size: 15.22 MB
Format: PDF, ePub, Docs
View: 6674
Download and Read
A little over ?ve years have passed since the ?rst edition of this book appeared in print. Seems like an instant but also eternity, especially considering numerous developments in the hardware and software that have made it from the laboratory test beds into the real world of powder diffraction. This prompted a revision, which had to be beyond cosmetic limits. The book was, and remains focused on standard laboratory powder diffractometry. It is still meant to be used as a text for teaching students about the capabilities and limitations of the powder diffraction method. We also hope that it goes beyond a simple text, and therefore, is useful as a reference to practitioners of the technique. The original book had seven long chapters that may have made its use as a text - convenient. So the second edition is broken down into 25 shorter chapters. The ?rst ?fteen are concerned with the fundamentals of powder diffraction, which makes it much more logical, considering a typical 16-week long semester. The last ten ch- ters are concerned with practical examples of structure solution and re?nement, which were preserved from the ?rst edition and expanded by another example – R solving the crystal structure of Tylenol .

Fundamentals Of Powder Diffraction And Structural Characterization Of Materials

Author: Vitalij Pecharsky
Publisher: Springer Science & Business Media
ISBN: 0387241477
Size: 35.84 MB
Format: PDF
View: 4721
Download and Read
Requires no prior knowledge of the subject, but is comprehensive and detailed making it useful for both the novice and experienced user of the powder diffraction method. Useful for any scientific or engineering background, where precise structural information is required. Comprehensively describes the state-of-the-art in structure determination from powder diffraction data both theoretically and practically using multiple examples of varying complexity. Pays particular attention to the utilization of Internet resources, especially the well-tested and freely available computer codes designed for processing of powder diffraction data.

Rietveld Refinement

Author: Robert E. Dinnebier
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110461382
Size: 45.66 MB
Format: PDF, ePub, Docs
View: 7403
Download and Read
Almost 50 years have passed since the famous papers of Hugo Rietveld from the late sixties where he describes a method for the refinement of crystal structures from neutron powder diffraction data. Soon after, the potential of the method for laboratory X-ray powder diffraction was discovered. Although the method is now widely accepted, there are still many pitfalls in the theoretical understanding and in practical daily use. This book closes the gap with a theoretical introduction for each chapter followed by a practical approach.The flexible macro type language of the Topas Rietveld software can be considered as the defacto standard.

X Ray Diffraction For Materials Research

Author: Myeongkyu Lee
Publisher: CRC Press
ISBN: 1315361973
Size: 78.98 MB
Format: PDF, Kindle
View: 2318
Download and Read
X-ray diffraction is a useful and powerful analysis technique for characterizing crystalline materials commonly employed in MSE, physics, and chemistry. This informative new book describes the principles of X-ray diffraction and its applications to materials characterization. It consists of three parts. The first deals with elementary crystallography and optics, which is essential for understanding the theory of X-ray diffraction discussed in the second section of the book. Part 2 describes how the X-ray diffraction can be applied for characterizing such various forms of materials as thin films, single crystals, and powders. The third section of the book covers applications of X-ray diffraction. The book presents a number of examples to help readers better comprehend the subject. X-Ray Diffraction for Materials Research: From Fundamentals to Applications also • provides background knowledge of diffraction to enable nonspecialists to become familiar with the topics • covers the practical applications as well as the underlying principle of X-ray diffraction • presents appropriate examples with answers to help readers understand the contents more easily • includes thin film characterization by X-ray diffraction with relevant experimental techniques • presents a huge number of elaborately drawn graphics to help illustrate the content The book will help readers (students and researchers in materials science, physics, and chemistry) understand crystallography and crystal structures, interference and diffraction, structural analysis of bulk materials, characterization of thin films, and nondestructive measurement of internal stress and phase transition. Diffraction is an optical phenomenon and thus can be better understood when it is explained with an optical approach, which has been neglected in other books. This book helps to fill that gap, providing information to convey the concept of X-ray diffraction and how it can be applied to the materials analysis. This book will be a valuable reference book for researchers in the field and will work well as a good introductory book of X-ray diffraction for students in materials science, physics, and chemistry.

Solid State Hydrogen Storage

Author: Institute of Materials, Minerals, and Mining
Publisher:
ISBN:
Size: 63.72 MB
Format: PDF, Docs
View: 4811
Download and Read
Hydrogen fuel cells are emerging as a major alternative energy source in transportation and other applications. Central to the development of the hydrogen economy is safe, efficient and viable storage of hydrogen. Solid-state hydrogen storage: Materials and chemistry reviews the latest developments in solid-state hydrogen storage. Part one discusses hydrogen storage technologies, hydrogen futures, hydrogen containment materials and solid-state hydrogen storage system design. Part two reviews the analysis of hydrogen interactions including structural characterisation of hydride materials, neutron scattering techniques, reliably measuring hydrogen uptake in storage materials and modelling of carbon-based materials for hydrogen storage. Part three analyses physically-bound hydrogen storage with chapters on zeolites, carbon nanostructures and metal-organic framework materials. Part four examines chemically-bound hydrogen storage including intermetallics, magnesium hydride, alanates, borohydrides, imides and amides, multicomponent hydrogen storage systems, organic liquid carriers, indirect hydrogen storage in metal ammines and technological challenges in hydrogen storage. With its distinguished editor and international team of contributors, Solid-state hydrogen storage: Materials and chemistry will be a standard reference for researchers and professionals in the field of renewable energy, hydrogen fuel cells and hydrogen storage.

Anomalous X Ray Scattering For Materials Characterization

Author: Yoshio Waseda
Publisher: Springer
ISBN: 354046008X
Size: 67.19 MB
Format: PDF, Mobi
View: 4770
Download and Read
The production of multi layered thin films with sufficient reliability is a key technology for device fabrication in micro electronics. In the Co/Cu type multi layers, for example, magnetoresistance has been found as large as 80 % at 4. 2 K and 50 % at room temperature. In addition to such gigantic mag netoresistance, these multi layers indicate anti ferromagnetic and ferromag netic oscillation behavior with an increase in the thickness of the layers of the non magnetic component. These interesting properties of the new synthetic flmctional materials are attributed to their periodic and interracial structures at a microscopic level, although the origin of such peculiar features is not fully understood. Information on the surface structure or the number density of atoms in the near surface region may provide better insight. Amorphous alloys, frequently referred to as metallic glasses, are produced by rapid quenching from the melt. The second generation amorphous alloys, called "bulk amorphous alloys", have been discovered in some Pd based and Zr based alloy systems, with a super cooled liquid region at more than 120 K. In these alloy systems, one can obtain a sample thickness of several centime ters. Growing scientific and technological curiosity about the new amorphous alloys has focused on the fundamental factors, such as the atomic scale struc ture, which are responsible for the thermal stability with certain chemical compositions.

Neutrons And Synchrotron Radiation In Engineering Materials Science

Author: Peter Staron
Publisher: John Wiley & Sons
ISBN: 3527335927
Size: 32.14 MB
Format: PDF, Mobi
View: 4287
Download and Read
Besides its coverage of the four important aspects of synchrotron sources, materials and material processes, measuring techniques, and applications, this ready reference presents both important method types: diffraction and tomography. Following an introduction, a general section leads on to methods, while further sections are devoted to emerging methods and industrial applications. In this way, the text provides new users of large-scale facilities with easy access to an understanding of both the methods and opportunities offered by different sources and instruments.

Organic Nanostructures For Next Generation Devices

Author: Katharina Al-Shamery
Publisher: Springer Science & Business Media
ISBN: 9783540719236
Size: 51.65 MB
Format: PDF
View: 7699
Download and Read
This jaw-dropping window on the future is the first comprehensive overview of the fabrication, fundamental properties, and applications of a new class of nanoscaled organic materials. These materials offer incredible scope to scientists wanting to exploit their optical and electronic properties and offer the potential to create a new generation of tiny devices with powerful applications. Altogether, the book offers a unique integration of organic materials science basics, nanostructured organic materials fabrication, and device applications.