Download gaussian markov random fields throey and applications chapman hall crc monographs on statistics applied probability in pdf or read gaussian markov random fields throey and applications chapman hall crc monographs on statistics applied probability in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get gaussian markov random fields throey and applications chapman hall crc monographs on statistics applied probability in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Gaussian Markov Random Fields

Author: Havard Rue
Publisher: CRC Press
ISBN: 9780203492024
Size: 25.88 MB
Format: PDF, ePub
View: 5070
Download and Read
Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie

Statistics For Spatio Temporal Data

Author: Noel Cressie
Publisher: John Wiley & Sons
ISBN: 1119243041
Size: 46.63 MB
Format: PDF, ePub, Mobi
View: 6764
Download and Read
Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes,bridging classic ideas with modern hierarchical statisticalmodeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winnersof the 2011 PROSE Award in the Mathematics category, for thebook “Statistics for Spatio-Temporal Data” (2011),published by John Wiley and Sons. (The PROSE awards, forProfessional and Scholarly Excellence, are given by the Associationof American Publishers, the national trade association of the USbook publishing industry.) Statistics for Spatio-Temporal Data has now beenreprinted with small corrections to the text andthe bibliography. The overall content and pagination of thenew printing remains the same; the difference comes inthe form of corrections to typographical errors, editing ofincomplete and missing references, and some updated spatio-temporalinterpretations. From understanding environmental processes and climate trends todeveloping new technologies for mapping public-health data and thespread of invasive-species, there is a high demand for statisticalanalyses of data that take spatial, temporal, and spatio-temporalinformation into account. Statistics for Spatio-TemporalData presents a systematic approach to key quantitativetechniques that incorporate the latest advances in statisticalcomputing as well as hierarchical, particularly Bayesian,statistical modeling, with an emphasis on dynamical spatio-temporalmodels. Cressie and Wikle supply a unique presentation thatincorporates ideas from the areas of time series and spatialstatistics as well as stochastic processes. Beginning with separatetreatments of temporal data and spatial data, the book combinesthese concepts to discuss spatio-temporal statistical methods forunderstanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, includingvisualization, spectral analysis, empirical orthogonal functionanalysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging,and time series of spatial processes Development of hierarchical dynamical spatio-temporal models(DSTMs), with discussion of linear and nonlinear DSTMs andcomputational algorithms for their implementation Quantifying and exploring spatio-temporal variability inscientific applications, including case studies based on real-worldenvironmental data Throughout the book, interesting applications demonstrate therelevance of the presented concepts. Vivid, full-color graphicsemphasize the visual nature of the topic, and a related FTP sitecontains supplementary material. Statistics for Spatio-TemporalData is an excellent book for a graduate-level course onspatio-temporal statistics. It is also a valuable reference forresearchers and practitioners in the fields of applied mathematics,engineering, and the environmental and health sciences.

Advanced Spatial Modeling With Stochastic Partial Differential Equations Using R And Inla

Author: Elias T. Krainski
Publisher: CRC Press
ISBN: 0429628218
Size: 55.46 MB
Format: PDF, Kindle
View: 544
Download and Read
Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Statistical Inference And Simulation For Spatial Point Processes

Author: Jesper Moller
Publisher: CRC Press
ISBN: 9780203496930
Size: 71.81 MB
Format: PDF, Docs
View: 802
Download and Read
Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.

Statistical Inference

Author: S.D. Silvey
Publisher: CRC Press
ISBN: 9780412138201
Size: 71.30 MB
Format: PDF, ePub, Docs
View: 1269
Download and Read
Statistics is a subject with a vast field of application, involving problems which vary widely in their character and complexity.However, in tackling these, we use a relatively small core of central ideas and methods. This book attempts to concentrateattention on these ideas: they are placed in a general settingand illustrated by relatively simple examples, avoidingwherever possible the extraneous difficulties of complicatedmathematical manipulation.In order to compress the central body of ideas into a smallvolume, it is necessary to assume a fair degree of mathematicalsophistication on the part of the reader, and the book is intendedfor students of mathematics who are already accustomed tothinking in rather general terms about spaces and functions

Inference And Asymptotics

Author: D.R. Cox
Publisher: CRC Press
ISBN: 9780412494406
Size: 14.56 MB
Format: PDF
View: 3682
Download and Read
Likelihood and its many associated concepts are of central importance in statistical theory and applications. The theory of likelihood and of likelihood-like objects (pseudo-likelihoods) has undergone extensive and important developments over the past 10 to 15 years, in particular as regards higher order asymptotics. This book provides an account of this field, which is still vigorously expanding. Conditioning and ancillarity underlie the p*-formula, a key formula for the conditional density of the maximum likelihood estimator, given an ancillary statistic. Various types of pseudo-likelihood are discussed, including profile and partial likelihoods. Special emphasis is given to modified profile likelihood and modified directed likelihood, and their intimate connection with the p*-formula. Among the other concepts and tools employed are sufficiency, parameter orthogonality, invariance, stochastic expansions and saddlepoint approximations. Brief reviews are given of the most important properties of exponential and transformation models and these types of model are used as test-beds for the general asymptotic theory. A final chapter briefly discusses a number of more general issues, including prediction and randomization theory. The emphasis is on ideas and methods, and detailed mathematical developments are largely omitted. There are numerous notes and exercises, many indicating substantial further results.