Download models for dependent time series chapman hall crc monographs on statistics applied probability in pdf or read models for dependent time series chapman hall crc monographs on statistics applied probability in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get models for dependent time series chapman hall crc monographs on statistics applied probability in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Models For Dependent Time Series

Author: Granville Tunnicliffe Wilson
Publisher: CRC Press
ISBN: 1420011502
Size: 61.80 MB
Format: PDF, Mobi
View: 425
Download and Read
Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vect

Essays In Nonlinear Time Series Econometrics

Author: Niels Haldrup
Publisher: Oxford University Press
ISBN: 0199679959
Size: 76.67 MB
Format: PDF, ePub, Docs
View: 6322
Download and Read
This edited collection concerns nonlinear economic relations that involve time. It is divided into four broad themes that all reflect the work and methodology of Professor Timo Teräsvirta, one of the leading scholars in the field of nonlinear time series econometrics. The themes are: Testing for linearity and functional form, specification testing and estimation of nonlinear time series models in the form of smooth transition models, model selection and econometric methodology, and finally applications within the area of financial econometrics. All these research fields include contributions that represent state of the art in econometrics such as testing for neglected nonlinearity in neural network models, time-varying GARCH and smooth transition models, STAR models and common factors in volatility modeling, semi-automatic general to specific model selection for nonlinear dynamic models, high-dimensional data analysis for parametric and semi-parametric regression models with dependent data, commodity price modeling, financial analysts earnings forecasts based on asymmetric loss function, local Gaussian correlation and dependence for asymmetric return dependence, and the use of bootstrap aggregation to improve forecast accuracy. Each chapter represents original scholarly work, and reflects the intellectual impact that Timo Teräsvirta has had and will continue to have, on the profession.

Hidden Markov Models For Time Series

Author: Walter Zucchini
Publisher: CRC Press
ISBN: 9781420010893
Size: 21.65 MB
Format: PDF, ePub
View: 6164
Download and Read
Reveals How HMMs Can Be Used as General-Purpose Time Series Models Implements all methods in R Hidden Markov Models for Time Series: An Introduction Using R applies hidden Markov models (HMMs) to a wide range of time series types, from continuous-valued, circular, and multivariate series to binary data, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out computations for parameter estimation, model selection and checking, decoding, and forecasting. Illustrates the methodology in action After presenting the simple Poisson HMM, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference. Through examples and applications, the authors describe how to extend and generalize the basic model so it can be applied in a rich variety of situations. They also provide R code for some of the examples, enabling the use of the codes in similar applications. Effectively interpret data using HMMs This book illustrates the wonderful flexibility of HMMs as general-purpose models for time series data. It provides a broad understanding of the models and their uses.

Multivariate Models And Multivariate Dependence Concepts

Author: Harry Joe
Publisher: CRC Press
ISBN: 9780412073311
Size: 43.19 MB
Format: PDF
View: 2949
Download and Read
This book on multivariate models, statistical inference, and data analysis contains deep coverage of multivariate non-normal distributions for modeling of binary, count, ordinal, and extreme value response data. It is virtually self-contained, and includes many exercises and unsolved problems.

Handbook Of Statistics

Author:
Publisher: Elsevier
ISBN: 0444538631
Size: 27.33 MB
Format: PDF, ePub
View: 7495
Download and Read
The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments. The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. Comprehensively presents the various aspects of statistical methodology Discusses a wide variety of diverse applications and recent developments Contributors are internationally renowened experts in their respective areas

Time Series Analysis

Author: Tata Subba Rao
Publisher: Elsevier
ISBN: 0444538585
Size: 64.72 MB
Format: PDF, ePub, Mobi
View: 7075
Download and Read
The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments. The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. Comprehensively presents the various aspects of statistical methodology Discusses a wide variety of diverse applications and recent developments Contributors are internationally renowened experts in their respective areas

Robust Nonparametric Statistical Methods

Author: Thomas P. Hettmansperger
Publisher: CRC Press
ISBN: 1439809097
Size: 32.32 MB
Format: PDF
View: 4585
Download and Read
Presenting an extensive set of tools and methods for data analysis, Robust Nonparametric Statistical Methods, Second Edition covers univariate tests and estimates with extensions to linear models, multivariate models, times series models, experimental designs, and mixed models. It follows the approach of the first edition by developing rank-based m

Nonlinear Time Series

Author: Jiti Gao
Publisher: CRC Press
ISBN: 9781420011210
Size: 70.83 MB
Format: PDF, ePub, Docs
View: 464
Download and Read
Useful in the theoretical and empirical analysis of nonlinear time series data, semiparametric methods have received extensive attention in the economics and statistics communities over the past twenty years. Recent studies show that semiparametric methods and models may be applied to solve dimensionality reduction problems arising from using fully nonparametric models and methods. Answering the call for an up-to-date overview of the latest developments in the field, Nonlinear Time Series: Semiparametric and Nonparametric Methods focuses on various semiparametric methods in model estimation, specification testing, and selection of time series data. After a brief introduction, the book examines semiparametric estimation and specification methods and then applies these approaches to a class of nonlinear continuous-time models with real-world data. It also assesses some newly proposed semiparametric estimation procedures for time series data with long-range dependence. Even though the book only deals with climatological and financial data, the estimation and specifications methods discussed can be applied to models with real-world data in many disciplines. This resource covers key methods in time series analysis and provides the necessary theoretical details. The latest applied finance and financial econometrics results and applications presented in the book enable researchers and graduate students to keep abreast of developments in the field.

Hidden Markov And Other Models For Discrete Valued Time Series

Author: Iain L. MacDonald
Publisher: CRC Press
ISBN: 9780412558504
Size: 10.97 MB
Format: PDF, Docs
View: 5921
Download and Read
Discrete-valued time series are common in practice, but methods for their analysis are not well-known. In recent years, methods have been developed which are specifically designed for the analysis of discrete-valued time series. Hidden Markov and Other Models for Discrete-Valued Time Series introduces a new, versatile, and computationally tractable class of models, the "hidden Markov" models. It presents a detailed account of these models, then applies them to data from a wide range of diverse subject areas, including medicine, climatology, and geophysics. This book will be invaluable to researchers and postgraduate and senior undergraduate students in statistics. Researchers and applied statisticians who analyze time series data in medicine, animal behavior, hydrology, and sociology will also find this information useful.

Statistics For Long Memory Processes

Author: Jan Beran
Publisher: CRC Press
ISBN: 9780412049019
Size: 21.61 MB
Format: PDF, ePub, Mobi
View: 4875
Download and Read
Statistical Methods for Long Term Memory Processes covers the diverse statistical methods and applications for data with long-range dependence. Presenting material that previously appeared only in journals, the author provides a concise and effective overview of probabilistic foundations, statistical methods, and applications. The material emphasizes basic principles and practical applications and provides an integrated perspective of both theory and practice. This book explores data sets from a wide range of disciplines, such as hydrology, climatology, telecommunications engineering, and high-precision physical measurement. The data sets are conveniently compiled in the index, and this allows readers to view statistical approaches in a practical context. Statistical Methods for Long Term Memory Processes also supplies S-PLUS programs for the major methods discussed. This feature allows the practitioner to apply long memory processes in daily data analysis. For newcomers to the area, the first three chapters provide the basic knowledge necessary for understanding the remainder of the material. To promote selective reading, the author presents the chapters independently. Combining essential methodologies with real-life applications, this outstanding volume is and indispensable reference for statisticians and scientists who analyze data with long-range dependence.