Download numerical methods for two phase incompressible flows 40 springer series in computational mathematics in pdf or read numerical methods for two phase incompressible flows 40 springer series in computational mathematics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get numerical methods for two phase incompressible flows 40 springer series in computational mathematics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Numerical Methods For Two Phase Incompressible Flows

Author: Sven Gross
Publisher: Springer Science & Business Media
ISBN: 9783642196867
Size: 35.24 MB
Format: PDF, Docs
View: 2580
Download and Read
This book is the first monograph providing an introduction to and an overview of numerical methods for the simulation of two-phase incompressible flows. The Navier-Stokes equations describing the fluid dynamics are examined in combination with models for mass and surfactant transport. The book pursues a comprehensive approach: important modeling issues are treated, appropriate weak formulations are derived, level set and finite element discretization techniques are analyzed, efficient iterative solvers are investigated, implementational aspects are considered and the results of numerical experiments are presented. The book is aimed at M Sc and PhD students and other researchers in the fields of Numerical Analysis and Computational Engineering Science interested in the numerical treatment of two-phase incompressible flows.

Transport Processes At Fluidic Interfaces

Author: Dieter Bothe
Publisher: Birkhäuser
ISBN: 3319566024
Size: 45.80 MB
Format: PDF, Docs
View: 1594
Download and Read
There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplinary research approach combining Applied Analysis, Numerical Mathematics, Interface Physics and Chemistry, as well as relevant research areas in the Engineering Sciences. The contributions originated from the joint interdisciplinary research projects in the DFG Priority Programme SPP 1506 “Transport Processes at Fluidic Interfaces.”

Energy Transfers In Atmosphere And Ocean

Author: Carsten Eden
Publisher: Springer
ISBN: 3030057046
Size: 60.28 MB
Format: PDF
View: 4421
Download and Read
This book describes a recent effort combining interdisciplinary expertise within the Collaborative Research Centre “Energy transfers in atmosphere and ocean” (TRR-181), which was funded by the German Research Foundation (DFG). Energy transfers between the three dynamical regimes – small-scale turbulence, internal gravity waves and geostrophically balanced motion – are fundamental to the energy cycle of both the atmosphere and the ocean. Nonetheless, they remain poorly understood and quantified, and have yet to be adequately represented in today’s climate models. Since interactions between the dynamical regimes ultimately link the smallest scales to the largest ones through a range of complex processes, understanding these interactions is essential to constructing atmosphere and ocean models and to predicting the future climate. To this end, TRR 181 combines expertise in applied mathematics, meteorology, and physical oceanography. This book provides an overview of representative specific topics addressed by TRR 181, ranging from - a review of a coherent hierarchy of models using consistent scaling and approximations, and revealing the underlying Hamiltonian structure - a systematic derivation and implementation of stochastic and backscatter parameterisations - an exploration of the dissipation of large-scale mean or eddying balanced flow and ocean eddy parameterisations; and - a study on gravity wave breaking and mixing, the interaction of waves with the mean flow and stratification, wave-wave interactions and gravity wave parameterisations to topics of a more numerical nature such as the spurious mixing and dissipation of advection schemes, and direct numerical simulations of surface waves at the air-sea interface. In TRR 181, the process-oriented topics presented here are complemented by an operationally oriented synthesis focusing on two climate models currently being developed in Germany. In this way, the goal of TRR 181 is to help reduce the biases in and increase the accuracy of atmosphere and ocean models, and ultimately to improve climate models and climate predictions.

Isogeometric Analysis And Applications 2014

Author: Bert Jüttler
Publisher: Springer
ISBN: 3319233157
Size: 30.89 MB
Format: PDF
View: 2341
Download and Read
Isogeometric Analysis is a groundbreaking computational approach that promises the possibility of integrating the finite element method into conventional spline-based CAD design tools. It thus bridges the gap between numerical analysis and geometry, and moreover it allows to tackle new cutting edge applications at the frontiers of research in science and engineering. This proceedings volume contains a selection of outstanding research papers presented at the second International Workshop on Isogeometric Analysis and Applications, held at Annweiler, Germany, in April 2014.

Geometrically Unfitted Finite Element Methods And Applications

Author: Stéphane P. A. Bordas
Publisher: Springer
ISBN: 3319714317
Size: 60.51 MB
Format: PDF
View: 6225
Download and Read
This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.

Frontiers In Numerical Analysis

Author: James Blowey
Publisher: Springer Science & Business Media
ISBN: 9783540443193
Size: 55.76 MB
Format: PDF
View: 7161
Download and Read
A set of detailed lecture notes on six topics at the forefront of current research in numerical analysis and applied mathematics. Each set of notes presents a self-contained guide to a current research area. Detailed proofs of key results are provided. The notes start from a level suitable for first year graduate students in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. Current (unsolved) problems are also described and directions for future research are given. This book is also suitable for professional mathematicians.

Finite Elements In Fluids

Author: Richard H. Gallagher
Publisher: Taylor & Francis
ISBN:
Size: 48.97 MB
Format: PDF, Docs
View: 4423
Download and Read
Vols. for 1975 contain selected papers from the International Symposium on Finite Element Methods in Flow Problems; vols. for 1976- contain selected papers from the International Conference on finite Elements in Flow Problems.

Fluid Vortices

Author: Beverley Green
Publisher: Springer Science & Business Media
ISBN: 9780792333760
Size: 10.77 MB
Format: PDF, Docs
View: 3379
Download and Read
Fluid Vortices is a comprehensive, up-to-date, research-level overview covering all salient flows in which fluid vortices play a significant role. The various chapters have been written by specialists from North America, Europe and Asia, making for unsurpassed depth and breadth of coverage. Topics addressed include fundamental vortex flows (mixing layer vortices, vortex rings, wake vortices, vortex stability, etc.), industrial and environmental vortex flows (aero-propulsion system vortices, vortex-structure interaction, atmospheric vortices, computational methods with vortices, etc.), and multiphase vortex flows (free-surface effects, vortex cavitation, and bubble and particle interactions with vortices). The book can also be recommended as an advanced graduate-level supplementary textbook. The first nine chapters of the book are suitable for a one-term course; chapters 10--19 form the basis for a second one-term course.