Download principles of electron optics applied geometrical optics 2 in pdf or read principles of electron optics applied geometrical optics 2 in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get principles of electron optics applied geometrical optics 2 in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Principles Of Electron Optics Volume 2

Author: Peter W. Hawkes
Publisher: Academic Press
ISBN: 0128134054
Size: 11.11 MB
Format: PDF, Mobi
View: 5952
Download and Read
Principles of Electron Optics: Applied Geometrical Optics, Second Edition gives detailed information about the many optical elements that use the theory presented in Volume 1: electrostatic and magnetic lenses, quadrupoles, cathode-lens-based instruments including the new ultrafast microscopes, low-energy-electron microscopes and photoemission electron microscopes and the mirrors found in their systems, Wien filters and deflectors. The chapter on aberration correction is largely new. The long section on electron guns describes recent theories and covers multi-column systems and carbon nanotube emitters. Monochromators are included in the section on curved-axis systems. The lists of references include many articles that will enable the reader to go deeper into the subjects discussed in the text. The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography. Offers a fully revised and expanded new edition based on the latest research developments in electron optics Written by the top experts in the field Covers every significant advance in electron optics since the subject originated Contains exceptionally complete and carefully selected references and notes Serves both as a reference and text

Advances In Imaging And Electron Physics

Author:
Publisher: Academic Press
ISBN: 0128155426
Size: 12.76 MB
Format: PDF, ePub, Docs
View: 1953
Download and Read
Advances in Imaging and Electron Physics, Volume 206, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contains contributions from leading authorities on the subject matter Informs and updates on all the latest developments in the field of imaging and electron physics Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electrons and ion emission with a valuable resource Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing

Advanced Computing In Electron Microscopy

Author: Earl J. Kirkland
Publisher: Springer Science & Business Media
ISBN: 9781441965332
Size: 21.86 MB
Format: PDF, ePub, Docs
View: 2212
Download and Read
Preface to Second Edition Several new topics have been added, some small errors have been corrected and some new references have been added in this edition. New topics include aberration corrected instruments, scanning confocal mode of operations, Bloch wave eigenvalue methods and parallel computing techniques. The ?rst edition - cluded a CD with computer programs, which is not included in this edition. - stead the associated programs will be available on an associated web site (currently people.ccmr.cornell.edu/ ̃kirkland,but may move as time goes on). I wish to thank Mick Thomas for preparing the specimen used to record the image in Fig.5.26 and to thank Stephen P. Meisburger for suggesting an interesting biological specimen to use in Fig.7.24. Again, I apologize in advance for leaving out some undoubtedlyoutstanding r- erences. I also apologize for the as yet undiscovered errors that remain in the text. Earl J. Kirkland, December 2009 Preface to First Edition Image simulation has become a common tool in HREM (High Resolution El- tron Microscopy) in recent years. However, the literature on the subject is scattered among many different journals and conference proceedings that have occurred in the last two or three decades. It is dif?cult for beginners to get started in this ?eld.

Principles Of Optics

Author: Max Born
Publisher: CUP Archive
ISBN: 9780521784498
Size: 27.95 MB
Format: PDF, ePub, Mobi
View: 6050
Download and Read
Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past 40 years. The new edition is the first ever thoroughly revised and expanded edition of this standard text. Among the new material, much of which is not available in any other optics text, is a section on the CAT scan (computerized axial tomography), which has revolutionized medical diagnostics. The book also includes a new chapter on scattering from inhomogeneous media which provides a comprehensive treatment of the theory of scattering of scalar as well as of electromagnetic waves, including the Born series and the Rytov series. The chapter also presents an account of the principles of diffraction tomography - a refinement of the CAT scan - to which Emil Wolf, one of the authors, has made a basic contribution by formulating in 1969 what is generally regarded to be the basic theorem in this field. The chapter also includes an account of scattering from periodic potentials and its connection to the classic subject of determining the structure of crystals from X-ray diffraction experiments, including accounts of von Laue equations, Bragg's law, the Ewald sphere of reflection and the Ewald limiting sphere, both generalized to continuous media. These topics, although originally introduced in connection with the theory of X-ray diffraction by crystals, have since become of considerable relevance to optics, for example in connection with deep holograms. Other new topics covered in this new edition include interference with broad-band light, which introduces the reader to an important phenomenon discovered relatively recently by Emil Wolf, namely the generation of shifts of spectral lines and other modifications of spectra of radiated fields due to the state of coherence of a source. There is also a section on the so-called Rayleigh-Sommerfield diffraction theory which, in recent times, has been finding increasing popularity among optical scientists. There are also several new appendices, including one on energy conservation in scalar wavefields, which is seldom discussed in books on optics. The new edition of this standard reference will continue to be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.

High Resolution Electron Microscopy

Author: John C. H. Spence
Publisher: OUP Oxford
ISBN: 0191508403
Size: 75.77 MB
Format: PDF, Docs
View: 7740
Download and Read
This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomography, image quantification and simulation, radiation damage, the measurement of electron-optical parameters, and detectors (CCD cameras, Image plates and direct-injection solid state detectors). The theory of Scanning transmission electron microscopy (STEM) and Z-contrast are treated comprehensively. Chapters are devoted to associated techniques, such as energy-loss spectroscopy, Alchemi, nanodiffraction, environmental TEM, twisty beams for magnetic imaging, and cathodoluminescence. Sources of software for image interpretation and electron-optical design are given.