Download seismic wave propagation and scattering in the heterogeneous earth second edition in pdf or read seismic wave propagation and scattering in the heterogeneous earth second edition in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get seismic wave propagation and scattering in the heterogeneous earth second edition in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Seismic Wave Propagation And Scattering In The Heterogeneous Earth Second Edition

Author: Haruo Sato
Publisher: Springer Science & Business Media
ISBN: 3642230288
Size: 21.20 MB
Format: PDF, Docs
View: 4310
Download and Read
Seismic waves - generated both by natural earthquakes and by man-made sources - have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or spherical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed. The second edition especially includes new observational facts such as the spatial variation of medium inhomogeneities and the temporal change in scattering characteristics and recent theoretical developments in the envelope synthesis in random media for the last ten years. Mathematics is thoroughly rewritten for improving the readability. Written for advanced undergraduates or beginning graduate students of geophysics or planetary sciences, this book should also be of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.

Computational Seismology

Author: Heiner Igel
Publisher: Oxford University Press
ISBN: 0198717407
Size: 66.39 MB
Format: PDF, ePub
View: 4691
Download and Read
This book is an introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering, and many other fields. The physical problem of elastic wave propagation in 1D serves as a model system with which the various numerical methods are introduced and compared. The theoretical background is presented with substantial graphical material supporting the concepts. The results can be reproduced with the supplementary electronic material provided as python codes embedded in Jupyter notebooks. The book starts with a primer on the physics of elastic wave propagation, and a chapter on the fundamentals of parallel programming, computational grids, mesh generation, and hardware models. The core of the book is the presentation of numerical solutions of the wave equation with six different methods: 1) the finite-difference method; 2) the pseudospectral method (Fourier and Chebyshev); 3) the linear finite-element method; 4) the spectral-element method; 5) the finite-volume method; and 6) the discontinuous Galerkin method. Each chapter contains comprehension questions, theoretical, and programming exercises. The book closes with a discussion of domains of application and criteria for the choice of a specific numerical method, and the presentation of current challenges. Readers are welcome to visit the author's website www.geophysik.lmu.de/Members/igel for more information on his research, projects, publications, and other activities.

Frontiers In Pde Constrained Optimization

Author: Harbir Antil
Publisher: Springer
ISBN: 1493986368
Size: 76.22 MB
Format: PDF, ePub, Docs
View: 7230
Download and Read
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.

Seismic Wave Propagation And Scattering In The Heterogeneous Earth

Author: Haruo Sato
Publisher: Springer
ISBN:
Size: 33.61 MB
Format: PDF, Kindle
View: 1332
Download and Read
Focusing on recent developments in the area of seismic wave propagation and scattering, this text combines information from numerous sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials. With the emphasis firmly on the lithosphere, the book includes analyses of observations using the theoretical methods developed. Written for advanced undergraduates and beginning graduates of geophysics and planetary sciences, this is also of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.

Advances In Geophysics

Author: Haruo Sato
Publisher: Academic Press
ISBN: 9780080880334
Size: 80.98 MB
Format: PDF, Kindle
View: 1749
Download and Read
Seismic waves generated by earthquakes have been interpreted to provide us information about the Earth’s structure across a variety of scales. For short periods of less than 1 second, the envelope of seismograms changes significantly with increased travel distance and coda waves are excited by scattering due to randomly distributed heterogeneities in the Earth. Deterministic structures such as horizontally uniform velocity layer models in traditional seismology cannot explain these phenomena. This book focuses on the Earth heterogeneity and scattering effects on seismic waves. Topics covered are recent developments in wave theory and observation including: coda wave analysis for mapping medium heterogeneity and monitoring temporal variation of physical properties, radiation of short-period seismic waves from an earthquake fault, weak localization of seismic waves, attenuation of seismic waves in randomly porous media, synthesis of seismic wave envelopes in short periods, and laboratory investigations of ultrasonic wave propagation in rock samples. Understanding new methods for the analysis of short-period seismic waves to characterize the random heterogeneity of the Earth on many scales Observations of seismic wave scattering Discussion of techniques for mapping medium heterogeneity and for monitoring temporal change in medium characteristics Up-to-date techniques for the synthesis of wave envelopes in random media

Fundamentals Of Seismic Wave Propagation

Author: Chris Chapman
Publisher: Cambridge University Press
ISBN: 9781139451635
Size: 13.25 MB
Format: PDF, ePub, Docs
View: 3226
Download and Read
Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.