Download structure analysis by small angle x ray and neutron scattering in pdf or read structure analysis by small angle x ray and neutron scattering in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get structure analysis by small angle x ray and neutron scattering in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Structure Analysis By Small Angle X Ray And Neutron Scattering

Author: L.A. Feigin
Publisher: Springer Science & Business Media
ISBN: 1475766246
Size: 23.99 MB
Format: PDF, Mobi
View: 3276
Download and Read
Small-angle scattering of X rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, includ ing condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications. It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation. Diffraction methods are used for studying matter on all scales, from elementary particles to macro-objects. The use of X rays, neutrons, and electron beams, with wavelengths of about 1 A, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation.

Small Angle X Ray And Neutron Scattering From Solutions Of Biological Macromolecules

Author: Dmitri I. Svergun
Publisher: OUP Oxford
ISBN: 0191507032
Size: 68.47 MB
Format: PDF, Kindle
View: 6530
Download and Read
Small-angle scattering of X-rays (SAXS) and neutrons (SANS) is an established method for the structural characterization of biological objects in a broad size range from individual macromolecules (proteins, nucleic acids, lipids) to large macromolecular complexes. SAXS/SANS is complementary to the high resolution methods of X-ray crystallography and nuclear magnetic resonance, allowing for hybrid modeling and also accounting for available biophysical and biochemical data. Quantitative characterization of flexible macromolecular systems and mixtures has recently become possible. SAXS/SANS measurements can be easily performed in different conditions by adding ligands or binding partners, and by changing physical and/or chemical characteristics of the solvent to provide information on the structural responses. The technique provides kinetic information about processes like folding and assembly and also allows one to analyze macromolecular interactions. The major factors promoting the increasingly active use of SAXS/SANS are modern high brilliance X-ray and neutron sources, novel data analysis methods, and automation of the experiment, data processing and interpretation. In this book, following the presentation of the basics of scattering from isotropic macromolecular solutions, modern instrumentation, experimental practice and advanced analysis techniques are explained. Advantages of X-rays (rapid data collection, small sample volumes) and of neutrons (contrast variation by hydrogen/deuterium exchange) are specifically highlighted. Examples of applications of the technique to different macromolecular systems are considered with specific emphasis on the synergistic use of SAXS/SANS with other structural, biophysical and computational techniques.

Characterization Of Polymer Blends

Author: Sabu Thomas
Publisher: John Wiley & Sons
ISBN: 3527645616
Size: 73.22 MB
Format: PDF, Mobi
View: 872
Download and Read
Filling the gap for a reference dedicated to the characterization of polymer blends and their micro and nano morphologies, this book provides comprehensive, systematic coverage in a one-stop, two-volume resource for all those working in the field. Leading researchers from industry and academia, as well as from government and private research institutions around the world summarize recent technical advances in chapters devoted to their individual contributions. In so doing, they examine a wide range of modern characterization techniques, from microscopy and spectroscopy to diffraction, thermal analysis, rheology, mechanical measurements and chromatography. These methods are compared with each other to assist in determining the best solution for both fundamental and applied problems, paying attention to the characterization of nanoscale miscibility and interfaces, both in blends involving copolymers and in immiscible blends. The thermodynamics, miscibility, phase separation, morphology and interfaces in polymer blends are also discussed in light of new insights involving the nanoscopic scale. Finally, the authors detail the processing-morphology-property relationships of polymer blends, as well as the influence of processing on the generation of micro and nano morphologies, and the dependence of these morphologies on the properties of blends. Hot topics such as compatibilization through nanoparticles, miscibility of new biopolymers and nanoscale investigations of interfaces in blends are also addressed. With its application-oriented approach, handpicked selection of topics and expert contributors, this is an outstanding survey for anyone involved in the field of polymer blends for advanced technologies.

Advances In Planar Lipid Bilayers And Liposomes

Author: Ales Iglic
Publisher: Academic Press
ISBN: 9780123812674
Size: 55.94 MB
Format: PDF, ePub
View: 5415
Download and Read
Advances in Planar Lipid Bilayers and Liposomes, Volume 9, continues to include invited chapters on a broad range of topics, covering both main arrangements of the reconstituted system, namely planar lipid bilayers and spherical liposomes. The invited authors present the latest results in this exciting multidisciplinary field of their own research group. Many of the contributors working in both fields over many decades were in close collaboration with the late Prof. H. Ti Tien, the founding editor of this book series. There are also chapters written by some of the younger generation of scientists included in this series. This volume keeps in mind the broader goal with both systems, planar lipid bilayers and spherical liposomes, which is the further development of this interdisciplinary field worldwide. Incorporates contributions from newcomers and established and experienced researchers Explores the planar lipid bilayer systems and spherical liposomes from both theoretical and experimental perspectives Serves as an indispensable source of information for new scientists

Polymer Surfaces And Interfaces

Author: Manfred Stamm
Publisher: Springer Science & Business Media
ISBN: 9783540738657
Size: 70.11 MB
Format: PDF, Docs
View: 5681
Download and Read
In what is an extremely practical and applicable new work, experts provide concise explanations, with examples and illustrations, of the key techniques in this important field. In each case, after basic principles have been reviewed, applications of the experimental techniques are discussed and illustrated with specific examples. Scientists and engineers in research and development will benefit from an application-oriented book that helps them to find solutions to both fundamental and applied problems. They will know that the surfaces and interfaces of polymers play an important role in most of the application areas of polymers, from moulds, foils, and composites, to biomaterials and applications in micro- and nanotechnology.

Encyclopedia Of Physical Science And Technology

Author: Robert Allen Meyers
Publisher:
ISBN: 9780122274275
Size: 54.58 MB
Format: PDF, Docs
View: 4888
Download and Read
Following in the footsteps of the earlier editions, hundreds of the most respected scientists and engineers participated in the creation of this new edition, including many Nobel Laureates. The articles are in-depth, yet accessible, and address all of the key areas of physical science--including aeronautics, astronomy, chemistry, communications, computers, earth sciences, electronics, engineering, materials science, mathematics, nuclear technology, physics, power systems, propulsion, and space technology. (Midwest).

Neutron Scattering In Biology

Author: Jörg Fitter
Publisher: Springer Science & Business Media
ISBN: 9783540291084
Size: 78.45 MB
Format: PDF, ePub, Docs
View: 410
Download and Read
The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.

Neutron Scattering In Earth Sciences

Author: Hans-Rudolf Wenk
Publisher: Mineralogical Society of Amer
ISBN:
Size: 46.59 MB
Format: PDF
View: 2011
Download and Read
Volume 63 of Reviews in Mineralogy and Geochemistry provides an introduction for those not yet familiar with neutrons by describing basic features of neutrons and their interaction with matter as well illustrating important applications. The volume is divided into 17 Chapters. The first two chapters introduce properties of neutrons and neutron facilities, setting the stage for applications. Some applications rely on single crystals (Chapter 3) but mostly powders (Chapters 4-5) and bulk polycrystals (Chapters 15-16) are analyzed, at ambient conditions as well as low and high temperature and high pressure (Chapters 7-9). Characterization of magnetic structures remains a core application of neutron scattering (Chapter 6). The analysis of neutron data is not trivial and crystallographic methods have been modified to take account of the complexities, such as the Rietveld technique (Chapter 4) and the pair distribution function (Chapter 11). Information is not only obtained about solids but about liquids, melts and aqueous solutions as well (Chapters 11-13). In fact this field, approached with inelastic scattering (Chapter 10) and small angle scattering (Chapter 13) is opening unprecedented opportunities for earth sciences. Small angle scattering also contributes information about microstructures (Chapter 14). Neutron diffraction has become a favorite method to quantify residual stresses in deformed materials (Chapter 16) as well as preferred orientation patterns (Chapter 15). The volume concludes with a short introduction into neutron tomography and radiography that may well emerge as a principal application of neutron scattering in the future (Chapter 17).